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White matter alterations in Attention-Deficit/Hyperactivity

Disorder (ADHD): a systematic review of 129 diffusion imaging
studies with meta-analysis
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Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across
diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed,
Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment
based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the
retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any
age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age,
sex, and medication-naivety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies
provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23
datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and
association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-
analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA
was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of
low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-
quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections
subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition
parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may
enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to
consistency and comparability among studies, and should be addressed in future investigations.
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INTRODUCTION such as motor inhibition, attention, and/or working memory [2]. It
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelop- is commonly diagnosed in childhood, with community prevalence
mental condition characterized by age-inappropriate inattentive between 2-7% [3], but its impairing symptoms persists in
and/or hyperactive-impulsive symptoms [1]. Cognitively, indivi- adulthood in up to 65% of cases, and are associated with poor
duals with ADHD may present with deficits in executive functions, social and occupational outcomes [4]. Co-occurrent disorders,

'Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's
College London, SE5 8AF London, UK. 2Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London,
SE5 8AF London, UK. *Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK.
“Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan. °Center for Neuroscience Imaging Research,
Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. °Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National
University of Singapore, Singapore, Singapore. “Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore, Singapore. éIntegrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore. °Department of Psychiatry, Aoki Clinic, Tokyo,
Japan. "®Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. ''Centre for Neuroimaging Sciences, Department of Neuroimaging,
Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. "?Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
*Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany. '“Department of Electrical and Computer Engineering, National University
of Singapore, Singapore, Singapore. '*Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton,
Southampton, UK. '®Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK. '"Solent NHS Trust,
Southampton, UK. '®Hassenfeld Children’s Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA. '°Division of Psychiatry and Applied
Psychology, School of Medicine, University of Nottingham, Nottingham, UK. ®email: valeria.parlatini@kcl.ac.uk

Received: 26 February 2023 Revised: 23 June 2023 Accepted: 28 June 2023
Published online: 21 July 2023

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02173-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02173-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02173-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02173-1&domain=pdf
http://orcid.org/0000-0002-4754-2494
http://orcid.org/0000-0002-4754-2494
http://orcid.org/0000-0002-4754-2494
http://orcid.org/0000-0002-4754-2494
http://orcid.org/0000-0002-4754-2494
http://orcid.org/0000-0003-1277-484X
http://orcid.org/0000-0003-1277-484X
http://orcid.org/0000-0003-1277-484X
http://orcid.org/0000-0003-1277-484X
http://orcid.org/0000-0003-1277-484X
http://orcid.org/0009-0007-1216-7747
http://orcid.org/0009-0007-1216-7747
http://orcid.org/0009-0007-1216-7747
http://orcid.org/0009-0007-1216-7747
http://orcid.org/0009-0007-1216-7747
http://orcid.org/0000-0001-5617-4948
http://orcid.org/0000-0001-5617-4948
http://orcid.org/0000-0001-5617-4948
http://orcid.org/0000-0001-5617-4948
http://orcid.org/0000-0001-5617-4948
http://orcid.org/0000-0002-1410-7701
http://orcid.org/0000-0002-1410-7701
http://orcid.org/0000-0002-1410-7701
http://orcid.org/0000-0002-1410-7701
http://orcid.org/0000-0002-1410-7701
http://orcid.org/0000-0002-0180-8648
http://orcid.org/0000-0002-0180-8648
http://orcid.org/0000-0002-0180-8648
http://orcid.org/0000-0002-0180-8648
http://orcid.org/0000-0002-0180-8648
http://orcid.org/0000-0002-6664-7451
http://orcid.org/0000-0002-6664-7451
http://orcid.org/0000-0002-6664-7451
http://orcid.org/0000-0002-6664-7451
http://orcid.org/0000-0002-6664-7451
http://orcid.org/0000-0001-5877-8075
http://orcid.org/0000-0001-5877-8075
http://orcid.org/0000-0001-5877-8075
http://orcid.org/0000-0001-5877-8075
http://orcid.org/0000-0001-5877-8075
https://doi.org/10.1038/s41380-023-02173-1
mailto:valeria.parlatini@kcl.ac.uk
www.nature.com/mp

from autism spectrum disorder (ASD) to affective and substance
abuse disorders, are often observed [5, 6]. Multiple genetic and
environmental factors contribute to ADHD, but it is unclear how
they interplay with brain development to produce symptoms and
cognitive deficits [2]. Understanding the underlying neuropatho-
physiology is crucial to develop and tailor behavioral, pharmaco-
logical or brain-based treatments.

Meta-analyses of structural and functional neuroimaging
studies have identified several case-control differences, but mainly
focused on regional alterations [2]. However, brain regions
operate as neural networks, and there is increasing evidence that
anatomical brain connections are also affected in ADHD [7].
Diffusion-weighted imaging (DWI) is the only non-invasive
imaging method that allows us to study the anatomy of brain
connections in the living human. It measures the diffusion of
water molecules, which in the brain is restricted by structures such
as myelin and axons, providing information on the microstructural
organization of white matter tracts [8, 9] (Box 1).

The first systematic review of diffusion imaging studies in ADHD
was published in 2012 and included 15 studies, mostly in pediatric
samples [10]. The meta-analysis of nine of the included studies
revealed diffuse alterations mainly affecting fronto-striato-
cerebellar connections [10]. The two following meta-analyses,
respectively published in 2016 and 2018, included VBA and/or
TBSS studies and mainly identified regions of reduced FA in
posterior commissural fibers [11, 12]. The separate analysis of TBSS
and VBA studies also allowed the identification of regions of
increased FA in the corpus callosum (CC) and cingulum [11]. These
evidence syntheses were important to elucidate the most
consistent findings in ADHD. Still, they did not consider studies
using techniques not amenable to meta-analysis, and included a
very limited number of studies in adults. Since then, DWI has
benefitted from considerable technological advances, and the

BOX 1

Traditional (tensor based) DWI studies in ADHD have mainly analyzed case-control
differences using four different approaches: voxel-based analysis (VBA), region of
interest (ROI) analysis, tract-based spatial statistics (TBSS), and tractography. The
first diffusion imaging study in ADHD [19] used a VBA approach, which offers the
advantage of identifying whole-brain white matter alterations without a priori
anatomical hypotheses. Nevertheless, this approach is affected by the choice of
normalization and interpolation techniques, and the need for multiple compar-
isons correction may reduce the power to detect significant group differences
[146-149]. Conversely, ROl approaches extract diffusion measurements from
circumscribed brain areas selected based on a priori hypotheses. Thus, they are
sensitive to potential differences in the selected regions but may be limited by the
manual selection of ROIls, especially in early studies. Further, they are not
amenable to be included in whole-brain meta-analytic syntheses, as they could
inflate group differences in the selected regions [150, 151]. TBSS has been
developed to partly overcome the limitations of both VBA and ROI methods [152].
It uses a whole-brain white matter ‘skeleton’ mask to restrict the analyses to the
central part of the major tracts. This minimizes potential misalignment artefacts
while increasing the statistical power to detect group differences. However, TBSS
may not capture potential differences in the periphery of a tract and is still based
on comparisons at the voxel level. Finally, tractography allows the analysis of
group differences along specific white matter tracts [149]. Its main advantage is
the possibility of extracting diffusion measurements from the entire course of
individual tracts, although it may be less accurate in regions with complex fiber
organization (e.g., crossing fibers) [153]. Further, the high variability among
tractography algorithms and the placement of the ROIs used to identify the tracts
may limit comparisons among studies. DWI allows the extraction of quantitative
indexes of white matter microstructural organization, such as fractional anisotropy
(FA), mean diffusivity (MD), and axial and radial diffusivity (AD and RD,
respectively) [154, 155]. FA ranges from 0 to 1, according to the degree of tissue
anisotropy, and is the most used DWI metric. MD represents the average diffusion,
whilst AD and RD respectively reflect diffusion along the main axis and
perpendicular to it [156]. Although there is not a precise correspondence between
these measures and the underlying biological attributes, multiple aspects of tissue
microstructure, including the number and size of axons, myelination, and
membrane permeability may contribute to FA. Similarly, axon size and density
may affect AD, whilst myelination may contribute to RD [127, 156]. As these
indices vary during brain maturation and in pathological conditions [157, 158],
they are useful for case-control comparisons or to study age-related changes.
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quality and number of published studies in the field of ADHD has
progressively increased. A more comprehensive review with meta-
analysis is therefore timely to provide a broader view of the
findings, identify the most robust evidence, and highlight
methodological considerations. Therefore, we conducted a
comprehensive systematic review of DWI studies in ADHD,
including a quality assessment of imaging data acquisition,
preprocessing and analysis. We then performed, wherever
possible, meta-analyses including individuals with ADHD of any
age and, separately, children and adults. Finally, we conducted
meta-regressions to test the effect of age, sex, and medication-
naive status, followed by a sensitivity analysis including only high-
quality datasets.

METHODS

This study followed a preregistered protocol (PROSPERO 2021
CRD42021259192) and is reported in line with the 2020 Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) Statement [13].

Data sources

We searched the following electronic databases: PubMed (Med-
line), Ovid databases (Ovid MEDLINE®, EMBASE Classic+EMBASE,
PsycINFO), and Web of Knowledge (including Web of Science,
Biological Abstracts, BIOSIS, Food science and technology
abstracts), without language and date restrictions. The search
was first conducted on the 22" June 2021 and updated on the
26™ March 2022. Search terms and syntax for each electronic
database are reported in the Supplementary material. The
reference lists of previous reviews were hand-searched for any
additional eligible studies that could have been missed in the
electronic searches.

Identification and selection of studies

First, two authors (VP and TI) independently screened titles and
abstracts of all nonduplicated papers and agreed on a final list of
studies that proceeded to full-text screening. Then, these two
authors independently assessed the eligibility of these studies for
the systematic review and meta-analysis. Any discrepancy
between the two authors was resolved by a third senior
author (SC).

Study selection
Studies were included in the systematic review if they:

1. were peer-reviewed, indicating methodological adequacy, in line
with recent meta-analyses [11, 12];

2. recruited individuals diagnosed with ADHD based on the criteria of
the Diagnostic and Statistical Manual of Mental Disorders (DSM-IIl or
following editions) or International Classification of Diseases (ICD-9
or 10) and typically developing (TD) controls;

3. collected diffusion imaging data from both ADHD participants and
TD controls.

According to our pre-registered protocol, we assessed the
feasibility of conducting a meta-analysis of eligible whole-brain
studies (i.e., TBSS and VBA studies), provided their number was
increased sufficiently (i.e., by 50%), as compared to the last
published meta-analysis before the start of this study [11], to
justify a new meta-analysis. Additionally, studies were eligible for
the meta-analysis only if they compared whole-brain diffusion
imaging data (any metric) between individuals with ADHD and TD
controls.

Data extraction

Two authors (Tl and YL) independently extracted information from
the studies selected for the systematic review. Any discrepancy
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PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources
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Fig. 1 PRISMA 2020 flow diagram.

between the two authors was resolved by a third author (VP). Data
extracted from all studies in the systemic review included: sample
size, demographic and clinical characteristics (i.e., age, sex, total
intelligent quotient (IQ), ADHD presentation, comorbidities, and
medication-naive status); analytic method; significant case-control
comparisons and associations between diffusion metrics and
symptom severity or cognitive performance. Further, data on
imaging data acquisition, preprocessing and analysis were
extracted for the quality assessment (see below). Authors were
contacted for missing data on imaging parameters included in the
quality assessment.

For the meta-analyses, we extracted peak coordinates and their
effect sizes for FA, MD, AD and RD contrasts. In studies not
providing exact effect sizes for peak coordinates, the study
threshold for significance was interpreted as the effect size, as in
previous reports [11]. In cases where peak coordinates and/or
effect sizes were not provided, we contacted the corresponding
authors to obtain the missing data. P-values of peak coordinates
were converted to t-values using the anisotropic effect size signed
differential mapping (AES-SDM) utility (http://www.sdmproject.
com/utilities/?show=>Statistics) [14]. Peak coordinates are available
as Supplementary material.

Quality assessment

In the absence of an established tool to rate the quality of DWI
studies, criteria were identified based on published recommenda-
tions (listed in Supplementary Table S3). A traffic light system was
then implemented, and studies were assigned a low/medium/
high-quality rating separately for imaging data acquisition,
preprocessing, and analysis, as well as an overall rating based
on the worse single rating. Two authors (SL and TTN) indepen-
dently completed the quality assessment and discrepancies were
resolved by a third author (JHZ).

SPRINGER NATURE

Meta-analysis and meta-regressions

We ran meta-analyses for diffusion metrics that had peak
coordinates available from at least five suitable studies. As in
previous meta-analyses [11, 12], we used the Signed Differential
Mapping (SDM) software, version 6.21 [15] (https://
www.sdmproject.com/), to analyze regional differences in tract
metrics between ADHD and TD control groups; and used the
TBSS template for TBSS studies. Also consistently with prior
studies [11, 12], we used a random effects model, and the same
statistical threshold that was previously applied (p < 0.005 at the
voxel level with an extent threshold of 10 voxels). Meta-analyses
were repeated in the pediatric sample (i.e., children/adolescents
<18 years) and adults separately; and then in children (<12
years) and adolescents separately (Supplementary Table S2). We
also conducted a post-hoc sensitivity analysis only including
datasets judged of high quality. Finally, we ran meta-regression
analyses to test the linear effects of age, percentage of males
and medication-naive subjects. We chose these variables
because they have been associated with variation in white
matter characteristics [16, 17]. Further, given that a previous
report suggested that stimulant treatment could affect FA
measures in children, but not adults [16], we tested the potential
confounding effect of treatment exposure in the meta-
regression of age.

RESULTS

Systematic review

As shown in the PRISMA flow diagram (Fig. 1), from a pool of 956
possibly relevant references, we included 129 studies (96 in
children, 25 in adults and 8 including both age groups), for a total
of 6739 ADHD participants and 6476 controls. As many studies in
pediatric samples included both children and adolescents, in the

Molecular Psychiatry (2023) 28:4098 - 4123
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Fig. 2 Projection pathways and associated impairment. This figure displays the distinct components of the frontostriatal and thalamo-
frontal connections (panel a); cerebellar pathways (panel b); and the corticospinal tract (panel c). Significant associations between tract
metrics and cognitive deficits or symptoms are reported. Additional abbreviations: ATR anterior thalamic radiation, FS frontostriatal tract.

narrative synthesis we aggregated them under ‘children’ (i.e. <18
years). However, in the meta-analysis, we also considered them
separately (Supplementary Table S2). With regards to the imaging
data analytic approach, the retained studies used one or a
combination of the following: TBSS (43 studies), tractography
(38 studies), ROI (22 studies), VBA (16 studies), network/graph
analysis (17 studies) or other techniques (e.g., fixel-based analysis)
(3 studies). Here, we first summarize the results of these studies as
a narrative review, according to the topographical organization of
the main brain connections [18]. These can be grouped in
projection (cortico-subcortical) pathways, which relay sensory-
motor information; association (intra-hemispheric) pathways,
which integrate functions of brain regions within the same
hemisphere; and commissural (inter-hemispheric) pathways,
which support information transfer between the two hemispheres
[18]. Associations between diffusion metrics and symptoms/
cognitive deficits are summarized in Figs. 2 and 3 and detailed
in Supplementary material (page 5). Detailed characteristics of
included studies are reported in Tables 1 and 2. Excluded studies
are reported, with reasons, in the Supplementary material (page 3
and Supplementary Table S1). We then discuss the quality
assessment and present the results of the meta-analyses and
meta-regressions.

Projection pathways

Fronto-striato-thalamic circuits: Most studies focused on fronto-
striato-thalamic circuits (Fig. 2). Thirty-two studies reported tract
metric alterations within distinct components of the frontostriatal
pathways (connecting the frontal white matter to the striatum
through the corona radiata and internal capsule) of children with
ADHD as compared to controls [19-50]. Reduced FA was reported
by seven tractography [23, 24, 27, 29, 36, 41, 45], four TBSS
[25, 28, 37, 46], four VBA [19, 32, 40, 49] and two ROI [33, 38]
studies. Increased FA was reported by only five studies, which
either used a VBA [26, 35, 39] or a TBSS approach [43, 44]. Finally,
four studies identified differences between ADHD presentations in
children [34, 48, 51, 52]. Considering adult/mixed samples,
10 studies reported diffusion alterations in individuals with ADHD
as compared to controls [53-62]. Of these, five reported reduced

Molecular Psychiatry (2023) 28:4098 - 4123

FA [55, 57, 58, 60, 62] and only one increased FA [53]. Further,
differences in frontostriatal tracts were reported between ADHD
persisters (i.e, those with a childhood diagnosis persisting in
adulthood) and remitters [63]. Several studies also investigated
brain-behavior relationships (Fig. 2).

Considering the thalamus and the anterior thalamic radiation
(ATR), 13 studies reported significant case-control differences in
children [20-22, 28, 30, 43, 50, 64-69]. Among these, two reported
reduced FA [67, 68], and two increased FA [43, 66]. In adult/mixed
samples, alterations were only identified by seven studies
[56, 58, 70-74], of which four reported reduced FA [58, 70-72]
and one both reduced and increased FA [74]. In summary,
reduced FA was the most consistently reported alteration within
fronto-striato-thalamic circuits, often observed bilaterally. Tract
metrics were significantly correlated with both clinical and
neuropsychological characteristics (Fig. 2).

Corticospinal tract (CST): Fifteen studies reported diffusion
alterations within the posterior limb of the internal capsule/CST
in children with ADHD [25, 37, 38, 44, 48, 66, 67, 75-82]. Among
these, reduced FA was noted by four TBSS [25, 37, 67, 75], one
tractography [82] and one ROI study [80]. Increased FA was only
identified by two TBSS [44, 66] and one tractography study [76].
Only two studies identified alterations in adult/mixed samples and
either reported increased [74] or decreased FA in the CST [58]. In
sum, the CST has been mainly investigated in children and most
studies have reported reduced FA. Diffusion metrics have been
associated with clinical symptoms but also task performance
(Fig. 2).

Cerebellar pathways: Eight studies reported alterations in the
cerebellum or the middle cerebellar peduncle (MCP) in children
with ADHD [19, 20, 25, 32, 37, 49, 64, 83]. Among these, reduced
FA was identified by three VBA [19, 32, 49], two TBSS [25, 37] and
one ROI study [83]. No study reported increased FA. Only two
studies identified alterations in the cerebellum/MCP of adults with
ADHD [56, 74]. In sum, reduced FA was the most consistently
reported alterations within the cerebellum/MCP. Only one study
reported reduced FA in the inferior cerebellar peduncle [37]. Tract
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Fig. 3 Association and commissural pathways and associated impairment. This figure shows the three branches of the superior
longitudinal fasciculus (SLF) (Panel a); the cingulum (CING), uncinate (UNC), inferior longitudinal fasciculus (ILF) and inferior fronto-occipital
fasciculus (IFOF) (Panel b); and the main subdivisions of the corpus callosum (CC) (Panel c). Significant associations between tract metrics and

cognitive deficits or symptoms are reported.

metrics were significantly associated with symptoms and cogni-
tive performance (Fig. 2).

Commissural pathways. The most investigated commissural path-
way was the CC (Fig. 3). We identified 17 studies that reported tract
metric alterations in the CC of ADHD children as compared to
controls [20, 21, 25, 28, 40, 43, 46, 48, 67, 75, 77, 84-89]. Reduced FA
was found in seven TBSS studies [25, 28, 46, 67, 75, 84, 88] and in one
VBA study [40], especially in the splenium of the CC. ROI studies
reported conflicting results, with either increased [20] or decreased
FA in the splenium of the CC [85]. Tractography studies reported
reduced FA [86, 89]. Differences in diffusion metrics were also noted
among ADHD presentations [48, 51] and treated/untreated indivi-
duals [87]. Eleven adult/mixed sample studies reported tract metric
alterations in the CC [53-55, 57, 58, 70, 71, 74, 90-92]. Reduced FA
was found in four TBSS studies especially in the body and splenium
of the CC [55, 58, 70, 91], two VBA [54, 71] and an ROI study [92].
Finally, a tractography study in a mixed pediatric-adult sample
reported reduced FA in the splenium of the CC [57], and another
reduced FA in callosal fibers [60]. Overall, reduced FA was the most
consistently reported alteration, especially in the splenium of the CC.
Tract metrics were significantly correlated with both clinical and
neuropsychological characteristics (Fig. 3).

Association pathways

Superior longitudinal fasciculus (SLF): Seventeen studies reported
tract metric alterations in the SLF of ADHD children as compared to
controls [21, 23, 24, 37, 38, 46, 48, 50, 65, 70, 77, 78, 80, 84, 88, 93, 941.
Among these, reduced FA was observed in five TBSS
[37, 46, 70, 84, 88], two tractography [23, 24], and one ROl study
[80]. Only a TBSS study reported increased FA [94]. Differences in
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tract metrics were also observed between ADHD presentations
[48, 51] and sexes [88]. Nine adult/mixed sample studies
[53, 55, 58, 60, 71, 74, 95-97] reported case-control differences in
SLF metrics. Of these, three TBSS [58, 70, 95], one tract-based analysis
[97], one tractography [60], and one ROI study [96] noted reduced FA
in individuals with ADHD as compared to controls. Further, a study
combining an ROl and machine learning approach identified both
reduced and increased FA in the SLF of adults with ADHD [74]. Sex
differences were also observed by a tractography study in a mixed
pediatric-adult sample, with lower FA in females [57]. Overall,
reduced FA was the most consistently reported alteration, bilaterally
or in either hemisphere with comparable frequency. Tract metrics
were significantly correlated with both symptom severity and
cognitive performance (Fig. 3).

Cingulum bundle: Twenty-one studies in children reported tract
alterations in the cingulum of ADHD patients as compared to
controls [21-24, 34, 37-39, 47, 48, 50, 66, 67, 69, 78, 88, 94, 98-101].
Reduced FA was noted by three TBSS [67, 88, 99] and four
tractography studies [23, 24, 100, 101]. Increased FA was observed in
two TBSS [66, 94] and two VBA studies [39, 98]. Differences were also
identified among ADHD presentations [51, 52]. Eight studies in adult/
mixed samples reported tract alterations in the cingulum
[53, 54, 59, 71, 73, 74, 96, 102]. Reduced FA was noted by two VBA
studies [54, 71], one tractography [102] and one ROI study [96].
Conversely, one VBA study reported increased FA [53] and one ROI
study both increased and reduced FA [74]. Overall, both increased
and reduced FA in the cingulum have been reported, bilaterally or in
either hemisphere with equal frequency. Diffusion characteristics
have been associated with variation in both clinical and cognitive
profiles (Fig. 3).
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Uncinate fasciculus: Ten studies in children and three in adults
reported tract metric alterations in the uncinate fasciculus of
individuals with  ADHD as compared to controls
[37, 38, 43, 53, 71, 74, 82, 87, 94, 97]. Of these, TBSS studies
either reported increased [43, 94] or decreased FA [37, 82] in
ADHD children. In adults, two VBA study reported increased FA
[53, 71], whilst a tract-based analysis observed reduced FA [97].
Overall, main differences were observed either bilaterally or in the
left uncinate, and were associated with inattentive-emotional
symptoms, and cognitive deficits (Fig. 3).

Inferior longitudinal fasciculus (ILF): Thirteen studies reported
case-control differences in the ILF of ADHD children versus
controls [21, 25, 37, 38, 46, 66, 75, 78, 79, 82, 87, 94, 103]. Reduced
FA in the ILF was noted by four TBSS [25, 37, 46, 75], an ROI [103],
and two tractography studies [79, 82]. Two studies reported
increased FA [66, 94]. Differences were also identified between
females and males [88] and between treated and untreated
individuals [87]. Five studies in adult/mixed samples reported
case-control differences in the ILF [58, 60, 74, 102, 104]. Using
different techniques, three of these studies observed reduced FA
[58, 102, 104], one increased FA [60], and one both increased and
reduced FA [74]. Overall, reduced FA was the most frequently
reported tract alteration, either bilaterally or in the left hemi-
sphere, and was often associated with inattention (Fig. 3).

Inferior fronto-occipital fasciculus (IFOF): Eleven studies in
pediatric samples reported case-control differences in the IFOF
[21, 43, 46, 48,67, 75,78, 79, 82, 84, 103]. Reduced FA was noted in
four TBSS studies [46, 67, 75, 84], an ROl [103], and two
tractography studies [79, 82]. Increased FA was only reported by
one TBSS study [43]. Six studies reported case-control differences
in the IFOF in adult or mixed children-adult samples
[53, 58, 71, 74, 97, 104]. Of these, three studies using different
techniques reported reduced FA [58, 74, 97] and one both
reduced and increased FA [71]. Sex differences were also noted in
a mixed pediatric-adult sample [57]. Overall, as for the ILF, reduced
FA was the most frequently reported tract alteration, either
bilaterally or in the left hemisphere, and was associated with
inattention and emotional problems (Fig. 3).

Quality assessment

Among the included studies, 68.7% were judged to be of low
overall quality, mainly due to factors related to pre-processing
(rated low-quality in 54% of studies) and/or acquisition parameters
(rated low-quality in 46% of reports). Low-quality ratings for
preprocessing were mainly due to lack of motion correction/
quality checks; those for acquisition to the use of non-isotropic
voxels or lack of information. The quality assessment of individual
studies is reported in Supplementary Tables S4 and 5.

Cingulum Body of CC

,“ .’,
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Meta-analyses and meta-regressions

Meta-analysis of TBSS studies comparing ADHD versus controls. Of
the 43 TBSS studies included in the systematic review, 25 had
available peak coordinates for case-control differences in FA and 18
in MD from non-duplicated datasets (see Supplementary Table S2).
Therefore, these studies were included in two separate meta-
analyses. The first meta-analysis included 25 TBSS studies, for a total
of 32 datasets (26 in children and 6 in adults), comparing FA
between 1348 individuals with ADHD and 1354 TD controls. As
shown in Fig. 4 and Supplementary Table S6, the SDM analysis
identified two clusters showing reduced FA values in the ADHD
group compared with the TD control group. The right splenium of
the CC, extending to the posterior cingulum, showed the most
significant effect size and cluster extent (Fig. 4). The right body of CC
exhibited the second-largest effect size and cluster extent. No
clusters exhibited increased FA values in the ADHD group as
compared with TD controls. The second meta-analysis included
18 studies, for a total of 23 datasets (19 in children and 4 in adults),
comparing MD between 1051 participants with ADHD and 1101
controls, and did not identify any significant clusters. Due to the
limited number of studies reporting peak coordinates for AD and RD
(three and four, respectively), it was not possible to carry out meta-
analyses for these metrics. Finally, the systematic review identified
16 studies that used a VBA approach. However, among these, only
one study with available peak coordinates was not included in the
previous review by Aoki et al., 2018 [11]. Therefore, we did not re-
run the meta-analysis based on our pre-published protocol.

Meta-analyses of TBSS studies in children and adult samples. The
meta-analyses of TBSS studies investigating case-control differ-
ences in FA in the pediatric sample (<18 years) showed no
significant clusters. Similarly, we did not observe significant
clusters when we separated children (<12 years) and adolescents.
By contrast, the meta-analysis including only adult studies
identified five clusters showing reduced FA in individuals with
ADHD as compared to controls (Supplementary Table S7). The
right splenium of the CC exhibited the largest effect size and
cluster extent, and the right ATR showed the second-largest effect
size and cluster extent. No clusters exhibited increased FA values
in adults with ADHD as compared to controls. No significant
cluster was identified when repeating the meta-analysis on case-
control comparisons in MD separately in children and adults.

Meta-analysis of high-quality studies. In the sensitivity analysis
considering only the 6 TBSS datasets rated of high quality
(Supplementary Table S2), we did not observe significant
differences in FA between ADHD and TD controls.

Meta-regression analyses. We ran three meta-regressions including
the 25 TBSS studies (32 datasets) comparing FA between ADHD and

R L

Cingulum
% Body of CC

Splenium of CC

i

Splenium of CC

o ™
y =-44

Cingulum

Fig. 4 Results of the meta-analysis of TBSS studies. The meta-analysis of TBSS studies comparing fractional anisotropy (FA) between
individuals with ADHD (any age) and typically developing (TD) controls showed that individuals with ADHD had lower FA in the splenium of
the corpus callosum (CC), extending to the posterior cingulum, and in the body of the CC. Peak coordinates are reported in Supplementary
Table S6.

Molecular Psychiatry (2023) 28:4098 - 4123 SPRINGER NATURE



V. Parlatini et al.

4118

TD controls. The first meta-regression tested the linear influence of
age and identified two clusters with significant negative associa-
tions. In the right splenium and body of the CC, the differences
between groups in reduced FA amplified with advancing age
(Supplementary Table S8). No clusters displayed significant positive
associations with age. These findings held after including treatment
exposure as additional regressor (Supplementary Table S9). Meta-
regressions accounting for the percentage of medication-naive
participants or the percentage of males included 23 studies (30
datasets) and 24 studies (31 datasets), respectively. We observed
that ratios of medication-naive/medicated individuals and males/
females had no significant influence on FA.

DISCUSSION

We conducted the most comprehensive systematic review of DWI
studies in the field of ADHD, meta-analyzing studies amenable to
quantitative synthesis. The systematic review identified wide-
spread alterations (mainly reduced FA) in individuals with ADHD
as compared to controls, mostly in the fronto-striatal pathways,
cingulum, and CC. The meta-analysis of TBBS studies included 32
datasets (of which six in adults) and identified the most consistent
FA reduction in the right splenium (extending to the posterior
cingulum), followed by the body, of the CC. Meta-regressions
showed that these effects were not affected by sex or exposure to
ADHD medication. However, lower FA was related to older age,
and case-control differences did not survive in the pediatric meta-
analysis. Conversely, the meta-analysis in adults mainly identified
reduced FA in the right splenium of the CC and ATR.

Alterations in the splenium and the body of the CC are in line
with their roles in supporting cognitive and motor functions
affected in ADHD. The splenium of the CC connects the occipital,
temporal and posterior parietal lobes of the two hemispheres
[105] and has been associated with visuospatial information
transfer, processing speed, 1Q, and behavior [106]. Posterior
cortical regions underpin attention and fronto-parietal cognitive
control networks [107, 108], and thus contribute to cognitive
functions, such as attention, working memory and executive
control, which are commonly impaired in ADHD [109, 110].
Further, the body of the CC primarily connects premotor,
supplementary and primary motor cortices between the two
hemispheres, and contributes to the modulation of motor activity
[105]. Our findings are in line with previous meta-analyses of
structural magnetic resonance imaging (MRI) data reporting
consistent volumetric reductions in the splenium of the CC in
individuals with ADHD as compared to controls [111, 112];
although more recent meta- and mega-analyses observed
significant case-control differences only in children [113, 114].
Further, functional MRI meta-analyses have identified reduced
parietal and temporal activations during cognitive control,
attention and timing tasks [115-118]. Of note, the cluster located
in the splenium of the CC extended to the cingulum, which
connects regions subserving the default mode network (DMN)
[119]. There is fMRI evidence for a poor anticorrelation between
the DMN and task-positive networks, such as the fronto-parietal
control and ventral attentive networks [120, 121]. This, according
to the default mode interference theory of ADHD [122], may cause
lapses of attention during cognitively demanding tasks [123, 124].
Notably, a prior study reported that white matter disruption in the
splenium and body of the CC was associated with decreased
resting-state functional connectivity in the DMN posterior
cingulate cortex [125]. Taken together, our findings and prior
studies suggest that altered anatomical connectivity within the
splenium and body of the CC may disrupt the function of brain
networks supporting cognitive and motor functions affected in
ADHD or their interaction with the DMN.

Importantly, our findings not only confirm but also extend those
of previous meta-analyses of DWI studies. Although the first meta-

SPRINGER NATURE

analysis combining nine VBA and TBSS studies reported more
consistent alterations within fronto-striato-cerebellar connections,
subsequent meta-analyses mainly identified altered FA within
commissural fibers [11, 12, 126]. The first included ten TBSS
studies and reported reduced FA in the splenium of the CC, right
sagittal stratum and left tapetum, extending to the cingulum, ILF
and IFOF [12]. The second performed two separate meta-analyses,
including 12 TBSS and 13 VBA studies respectively. It confirmed a
consistent reduced FA in the CC, in addition to the ILF, IFOF and
SLF. However, the meta-analysis of VBA studies also identified
regions of increased FA, e.g., in the midcingulate and anterior CC
[11]. Finally, a more recent meta-analysis combining 24 TBSS and
VBA studies confirmed a consistent FA reduction in the splenium
of the CC, extending to the body and right posterior corona
radiata [126]. The high consistency among the more recent meta-
analyses may be due to their largely overlapping pool of included
studies (e.g., almost 90% of articles included in Zhao et al,, 2022
[126] were included in Aoki et al., 2018 [11]). Our findings from 32
TBSS datasets further support the consistently reported callosal
alterations in ADHD extending to the cingulum. Different
mechanisms may lead to reduced FA, such as altered myelination,
axonal density/diameter or fiber crossing [127, 128]. As FA is a
composite measure, we encourage future studies to consistently
report additional metrics, e.g. AD and RD, as this may help
understand whether white matter alterations are primary (e.g.
related to myelination) or secondary to those in the gray matter
from which the tract origins from (e.g. number of neurons). Both
these mechanisms have been suggested as plausible in relation to
ADHD pathophysiology [113, 129]. Further, both genetic and
environmental factors may potentially contribute to the observed
alterations. For instance, a recent genome-wide association (GWA)
meta-analysis in ADHD identified, among others, genes related to
myelination [130]. However, their patter of methylation, which
may reflect environmental adversity, affect ADHD symptoms
trajectories [131]. Thus, genetic and environmental factors may
interplay to cause white matter abnormalities, which in turn are
associated with ADHD symptoms. Overall, there are likely multiple
alternative pathophysiologic pathways underpinning ADHD and
brain alterations are not necessarily causal to symptoms, but
might be co-occurrent manifestations or consequence of ADHD
behaviors.

As reported by Chen et al. [12], we also observed a negative
association between FA and age, with lower FA values in older
individuals. However, in this prior meta-analysis, findings in the
splenium of the CC survived in the pediatric meta-analysis, in
contrast to our study. The absence of significant findings in our
meta-analysis restricted to children is somehow unexpected given
that prior structural MRl meta- and mega-analyses reported
significant case-control volumetric and morphometric differences
in children but not in adults with ADHD [113, 114]. For instance,
reduced surface area and cortical thickness were identified in
fronto-cingulate-temporo-occipital regions of ADHD children, but
not in adults, compared to controls [114]. However, we believe
that our findings could provide new important insight into the
pathophysiology of ADHD across the lifespan. A possible
explanation of differences between prior and our results might
be related to the distinct developmental trajectories of the gray
and white matter. While gray matter structural measures increase
and reach their peak in childhood (~age 2 for cortical thickness;
~age 6 for gray matter volume; and ~11-12 years for surface area/
cerebral volume) and then decrease in a curvilinear fashion [132];
FA in the CC increases in a curvilinear fashion with age, peaking
between 21 and 29 years [133, 134]. Hence a delayed, less steep
increase in FA with age in ADHD compared to healthy subjects
would be reflected in larger case-control differences in older
subjects; whilst a less steep decrease in gray matter measures
would be more pronounced in childhood. The reduction in FA we
observed in the splenium and body of the CC of individuals with
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ADHD could hence reflect a delay in white matter maturation,
parallel to that observed in posterior cortices [135], which are
interhemispherically connected by the posterior CC. However,
longitudinal studies investigating developmental trajectories are
needed to clarify the course of brain structure and connectivity
alterations in ADHD.

We also observed a lack of spatial convergence in the sensitivity
analysis only including high-quality studies. These findings need
to be interpreted with caution because, although the quality
assessment was based on published recommendations, there is
not an available, established gold standard quality rating tool for
DWI studies. Further, this meta-analysis only included six studies.
Nevertheless, these findings suggest that the case-control
differences identified in DWI meta-analyses might be influenced
by non-optimal acquisition parameters or preprocessing. Future
studies should be encouraged to follow the existing recommen-
dations on imaging data acquisition, preprocessing, and analysis
(referenced in Supplementary Table S3). For example, studies
should (1) opt for isotropic voxels to avoid bias; (2) include
sufficient gradient directions to ensure rotation invariance and
improve precision; (3) spread multiple gradients unweighted
among weighted volumes in the scan for similar noise profiles; (4)
report sufficient acquisition and preprocessing information; (5)
include additional scans for distortion correction; and (6) perform
data quality control on the motion and report motion thresholds.
Further, research in ADHD may benefit from methodological
advances in the field. For instance, higher encoding resolution
may improve sensitivity to signal and biophysical properties [136];
acceleration techniques may improve applications to younger
populations [137]; and newer preprocessing methods may handle
more types of artefacts [138]. Overall, methodological develop-
ments may improve the study quality and reliability of findings,
thus fostering our understanding of brain microstructure and
connectivity in ADHD.

Prior meta-analyses of ADHD studies in other imaging
modalities also reported no significant spatial convergence
[139, 140], and related this to methodological differences among
studies and the high clinical and neurobiological heterogeneity of
ADHD. In support to the latter observation, our systematic review
indicates that differences may exist between ADHD presentations,
females and males, treated versus untreated individuals, and
participants with/without comorbidities. Further, a recent meta-
analysis has shown that FA reduction in the splenium of the CC is
a common feature of both ADHD and ASD, although the latter is
characterized by additional white matter alterations in frontos-
triatal pathways [126]. These findings, together with the limited
converging results in the whole sample meta-analysis and the
absence of significant results in the pediatric meta-analysis, should
encourage future studies to extend their investigations beyond
case-control differences and determine whether subgroups of
individuals with ADHD could be discerned based on white matter
characteristics. The need to parse neuroanatomic heterogeneity
has also been raised by studies in other MRI modalities [141], as
this may improve our understanding of ADHD pathophysiology.
Further, the stratification of the heterogenous ADHD population
based on differences in the underlying neuroanatomy may pave
the way to the development of new more targeted treatments
(Parlatini et al., under review).

Limitations

Some limitations of this work should be considered, mostly related
to limitations of the included studies. For instance, most studies
included in the narrative review used traditional tensor-based
methods, and only a minority included other imaging (e.g., g-ball)
and analysis (e.g., graph theory) techniques. We encourage the
use of state-of-the-art methods as this can also advance our
understanding of ADHD. As in previous meta-analyses, we used a
coordinate-based approach rather than the original t-statistic
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maps, as these are not publicly available, but this may limit the
accuracy of the results [14]. We conducted meta-analyses of TBSS
studies but did not replicate the one of VBA studies, according to
our pre-published protocol, as we could only have included one
additional study compared to Aoki et al. [11]. This reflects the
general tendency in the current literature towards the use of TBSS
as compared to VBA approaches. As in this previous work [11], we
preferred not to combine TBSS and VBA approaches in a single
meta-analysis because this would violate the assumption under
the null hypothesis that the expected FA differences are equal at
every voxel, and because there is evidence that the two
approaches may produce non-converging findings [11]. We
conducted separate meta-analyses of FA and MD, but could not
investigate other diffusion metrics (e.g., RD and AD) due to the
limited number of studies reporting them. We contacted authors
for missing data, but peak coordinates were not available for eight
studies. Our meta-analysis included a much greater number of
studies than prior syntheses, which enhances robustness of
findings; however, we encourage future investigations to provide
full details of their results to limit potential reporting bias.

The studies included in the systematic review/meta-analyses
mostly recruited small samples and were heterogeneous in
terms of clinicodemographic characteristics. They included
varying proportions of males and females and different ADHD
presentations. Most studies included subjects previously
exposed to medication, which can represent a potential
confounder in connectivity measurements [16]. Our meta-
regression analysis did not show any significant effect of
previous exposure to stimulants; however, longitudinal studies
in large samples are needed to disentangle the effects of
development and treatment. Further, only few studies restricted
the recruitment to comorbidity-free individuals. Most included
different disorders or did not provide information, thus we were
unable to control for comorbidities. This heterogeneity may have
potentially influenced consistency among studies and our
findings. For instance, about one fifth of individuals with ADHD
also have ASD [142]. However, comorbidity was not officially
allowed until the DSM-5 was published (2013) [1]; therefore, the
most recent studies and those in pediatric samples may be
enriched with comorbid cases. This may also have potentially
contributed to the lack of convergent findings in our pediatric
submeta-analysis. For instance, recent meta-analyses high-
lighted both shared and specific alterations in individuals with
ADHD and ASD [126, 143]. One of these identified reduced FA in
the CC of both ADHD and ASD individuals, but also clusters of
increased FA in those with ASD [126]. This may have confounded
and could be responsible for the negative findings in children
with ADHD. Finally, comorbidities, such as affective and
substance use disorders, are more common in adults with ADHD
[5] and could also have confounded the results. Restricting
recruitment to comorbidity-free individuals does not reflect daily
clinical practice and limits our understanding of the biological
basis of brain disorders. An alternative for future studies is that
of taking a dimensional approach, in line with the National
Institute of Mental Health Research Domain Criteria (RDoC)
framework [5, 144]. In our meta-analysis, we considered the
potential effect of sex and treatment exposure on the findings.
However, the number of studies comparing ADHD presentations
was limited, thus we could not meta-analyze them, and this
should be subject of future investigations. Finally, we separately
analyzed studies in children and adults, which allowed us to
identify adult-specific alterations; however, the number of
studies in the adult population was limited, thus findings should
be interpreted with caution. Nevertheless, the association we
observed between callosal FA and age, as well as findings from
previous structural MRI studies, should encourage the long-
itudinal investigation of differences in the developmental
trajectories of the white and gray matter in ADHD.
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CONCLUSIONS

Clinicodemographic and methodological differences among
studies are major barriers to our understanding of the neurobiol-
ogy of ADHD. Future studies are needed to disentangle the
potential biological differences related to sex, age, presentations,
and comorbidities. They may also investigate tracts that have so
far received less attention, such as the cerebellar peduncles,
especially in adults. Finally, methodological improvements are
recommended, especially optimizing imaging parameters, con-
trolling and reporting for head motion, as well as efforts to
enhance the comparability among studies, e.g., by using
anatomical atlases to identify ROIs and tracts. While currently
DWI studies do not have direct clinical implications in the field of
ADHD [145], our findings may help future studies to stratify
individuals with ADHD according to the underlying pathophysiol-
ogy, which may guide the development of more tailored
treatments. To this purpose, future study may also benefit from
the combination of multiple imaging approaches, e.g., fMRI,
functional Near Infrared Spectroscopy (fNIRS), and positron
emission tomography (PET), as these can provide complementary
information on functional and metabolic changes associated
with ADHD.
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