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Introduction
Stroke is common, and its consequent brain damage can cause various 
cognitive impairments. Associations between where and how much 
brain lesion damage a patient has suffered, and the particular impair-
ments that injury has caused (lesion-symptom associations) offer po-
tentially compelling insights into how the brain implements 
cognition.1 A better understanding of those associations can also fill a 
gap in current stroke medicine by helping us to predict how individual 
patients might recover from post-stroke impairments.2 Most recent 
work in this area employs machine learning models trained with 
data from stroke patients whose mid-to-long-term outcomes are 
known.2-4 These machine learning models are tested by predicting 
new outcomes—typically scores on standardized tests of post-stroke 
impairment—for patients whose data were not used to train the model. 
Traditionally, these validation results have been shared in peer- 
reviewed publications describing the model and its training. But recent-
ly, and for the first time in this field (as far as we know), one of these pre- 
trained models has been made public—The Disconnectome Symptom 
Discoverer model (DSD) which draws its predictors from structural dis-
connection information inferred from stroke patients’ brain MRI.5

Here, we test the DSD model on wholly independent data, never 
seen by the model authors, before they published it. Specifically, we 
test whether its predictive performance is just as accurate as (i.e. 
not significantly worse than) that reported in the original 
(Washington University) dataset, when predicting new patients’ 

outcomes at a similar time post-stroke (∼1 year post-stroke) and 
also in another independent sample tested later (5+ years) post- 
stroke. A failure to generalize the DSD model occurs if it performs 
significantly better in the Washington data than in our data from 
patients tested at a similar time point (∼1 year post-stroke). In add-
ition, a significant decrease in predictive performance for the more 
chronic sample would be evidence that lesion-symptom associa-
tions differ at ∼1 year post-stroke and >5 years post-stroke.

Materials and methods
The Disconnectome Symptom Discoverer model

The technical details of the DSD model are described in Talozzi et 
al.,5 though most of those details are irrelevant to this work, where 
we treat the model as a black box.

The input to the DSD model is a binary lesion image in standard 
Montreal Neurological Institute (MNI) space. The outputs are pre-
dicted scores on a wide range of tasks, which include tasks asses-
sing language outcomes after stroke, derived from the Western 
Aphasia Battery (WAB).6

Test data

Our independent sample is drawn from the Predicting Language 
Outcomes and Recovery After Stroke (PLORAS) database.7 The 

https://doi.org/10.1093/brain/awad352 BRAIN 2024: 147; e11–e13 | e11

https://orcid.org/0000-0003-0714-8545
https://orcid.org/0000-0003-0493-0283
https://orcid.org/0000-0002-0329-1814
mailto:t.hope@ucl.ac.uk
https://creativecommons.org/licenses/by/4.0/


database associates more than 1000 stroke patients’ brain MRI and 
demographic/clinical data with language scores derived from the 
Comprehensive Aphasia Test (CAT).8 Though the CAT is similar 
to the WAB in that both purport to measure the same or similar lan-
guage skills, CAT tasks are not identical to WAB tasks. For this rea-
son, we focused on two CAT tasks only. The CAT semantic fluency 
task was selected because it is essentially the same in the WAB and 
the CAT—asking patients to name as many animals as possible in 
1 min. Likewise, the visual naming task is similar in the WAB and 
CAT—requiring patients to name a series of common objects, de-
picted in pictures.

MRI preprocessing steps are described in detail elsewhere7; we 
use a semi-automated procedure to segment lesions, which is an 
elaboration of the popular Unified Segmentation algorithm, ex-
tended to cater to the damaged brain.9 This is in contrast to the 
Washington dataset, in which lesions were segmented by hand. 
Still, both approaches yield the required inputs to the DSD model, 
which are a 2 × 2 × 2 mm binary lesion image per patient, in stand-
ard MNI space. The DSD models converts these lesion images into a 
disconnectome map using routines distributed with the BCBtoolkit, 
and making reference to a dataset of n = 176 tractographies derived 
from 7 T MRI diffusion-weighted scans from healthy controls.

Analyses

We report the results of two types of analysis. The first is a simple 
generalization of the pre-trained DSD model to two subsamples of 
PLORAS patients. The first sample, ‘PLORAS 1 year’ (n = 314), includes 
patients whose naming and fluency skills were measured between 6- 
and 18-months post-stroke: i.e. near the 1-year post-stroke time 
point at which outcomes were assessed in the Washington dataset. 
The second sample includes PLORAS patients whose naming and flu-
ency skills were assessed >5 years post-stroke, which we refer to as 
the ‘PLORAS 5+ years’ sample (n = 340). The rationale here follows 
from increasing evidence (including that derived from PLORAS 
data) that recovery from aphasia (language impairments) after stroke 
can continue over years.10 To the extent that this is true, the DSD 
model’s predictive performance should be better when predicting 
outcomes at ∼1 year post-stroke (for which the model was trained) 
than when predicting outcomes many years later.

Since the DSD model does not predict CAT scores directly, we 
measure the quality of the predictions as the correlation between 
the predictions and selected CAT scores, and compare them to those 
reported for the Washington dataset (Supplementary Table 2 in 
Talozzi et al.5), using a Fisher r-to-z transform. We also report compar-
isons between the DSD model’s performance on PLORAS 5+ years pa-
tients and: (i) reported performance on the Washington dataset; and 
(ii) empirical predictive performance on the PLORAS 1 year patients.

Results
Table 1 reports summary statistics for the patient samples. When 
predicting outcomes for the PLORAS 1 year sample, performance 
was not significantly different from that reported for the 
Washington dataset (used to test the model in the report than intro-
duced it). However, performance was significantly worse when pre-
dicting outcomes for the PLORAS 5+ years sample (though only 
marginally, for the fluency score) (Table 2).

Discussion
Our results suggest that the DSD model generalizes out-of-sample 
to patients not seen by the model’s authors before they released 
it. Some numerical loss of predictive performance was observed 
for both fluency and naming skills of PLORAS patients assessed 
∼1-year post-stroke, but this was not significant for either outcome 
variable. This is a good result for the model, and also a confirmation 
that CAT scores measuring naming and fluency skills are at least 
somewhat related to the WAB scores that purport to measure the 
same skills. Predictive performance was worse for the PLORAS 5+ 
years dataset, both relative to the Washington dataset (where the 
difference was only significant for naming), and relative to the 
PLORAS 1 year dataset (where the differences were significant for 
both naming and fluency). This might be evidence that lesion- 
symptom associations change between 1 and 5 or more years post- 
stroke, consistent with other reports from the same database.10

However, the PLORAS 5+ year patients also had significantly larger 
lesions than the PLORAS 1-year sample (Wilcoxon rank sum test: 
z = 10.99, P < 0.001), which could also explain the difference.

Table 1 Summary statistics for two subsamples of PLORAS patients

Variable name PLORAS 1 year (median/IQR) PLORAS 5+  years (median/IQR)

Time post-stroke, years 0.98/0.45 7.98/5.70
Age at stroke onset, years 59.38/18.55 53.64/18.11
Semantic fluency score 14.0/10.0 (109 impaired) 12.5/10.0 (137 impaired)
Naming score 45/9 (73 impaired) 46/8 (91 impaired)
Sample size 314 340
Lesion volume, cm3 2.02/12.06 18.40/38.10

Table 2 Predictive results, and comparisons between them

R (predicted versus empirical)/P Z (comparing R’s)/P

Washington PLORAS  
1 year

PLORAS  
5+ years

Washington versus  
1 year

Washington versus  
5+ years

PLORAS 1 year versus  
5+ years

Naming 0.35/0.024a 0.31/<0.001 0.00/0.86 0.28/0.78 2.92/0.004 4.27/<0.001
Fluency 0.41/0.003a 0.34/<0.001 0.19/<0.001 0.65/0.52 1.94/0.053 2.07/0.04

The leftmost three columns report the correlation between predicted scores and empirical scores for both naming (first row) and fluency (second row). 
aInferred from the report of the DSD model (Supplementary Table 2 in Talozzi et al.5), rather than calculated directly.
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One limitation of this work is that MRI scans were acquired 
contemporaneously with behavioural data in the PLORAS dataset, 
whereas in the Washington dataset the model is predicting behav-
ioural scores at ∼1 year post-stroke from scans acquired acutely, 
within 2 weeks post-onset. This difference is noteworthy, because 
stroke-induced lesions can change over time post-stroke.2 The dif-
ference might explain the numerical (non-significant) perform-
ance loss for the DSD model when predicting PLORAS 1 year 
patients’ fluency and naming skills. Conversely, it might confound 
the comparison between performance on the Washington and 
PLORAS 5+ years datasets. The comparison could also be con-
founded because PLORAS patients’ lesions were segmented algor-
ithmically, whereas Washington patients’ lesions were segmented 
manually.

Importantly at first sight the DSD model’s performance appears 
not to match previously reported results in the field. For example, 
some of us have previously reported predictions that explain ∼60% 
of the variance in fluency and naming skills,3 whereas the DSD 
model’s predictions explain <20% of that variance. The comparison 
may be misleading because the prior results are derived from (i) 
models combining lesion data with non-lesion factors; and (ii) in-
ternal cross-validation, rather than genuinely out-of-sample test-
ing, as used here. It remains to be seen whether those previously 
reported performance levels can be replicated in analyses like that 
presented here.

Despite these limitations, our results are positive because we 
observe the DSD model to perform roughly as well in PLORAS pa-
tients as in the model authors’ own data, despite the differences be-
tween the two datasets. That this equivalence wanes when 
predicting the same skills many years after stroke, highlights the 
need to model changes in language skills over many years post- 
stroke. As far as we know, this is the first time that a pre-trained 
post-stroke prognostic model has been validated in this way, and 
in this sense, the DSD model represents a definite advance for the 
field. We hope that others will consider taking this same step in fu-
ture, in releasing their own pre-trained models.

Data availability
PLORAS test data, used in this work, can be made available to read-
ers on reasonable request. For the purpose of Open Access, the au-
thor has applied a CC BY public copyright licence to any Author 
Accepted Manuscript version arising from this submission.
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