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Functional anatomy and topographical
organization of the frontotemporal
arcuate fasciculus
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Traditionally, the frontotemporal arcuate fasciculus (AF) is viewed as a single entity in anatomo-clinical
models. However, it is unclear if distinct cortical origin and termination patterns within this bundle
correspond to specific language functions.We use track-weighted dynamic functional connectivity, a
hybrid imaging technique, to study the AF structure and function in two distinct datasets of healthy
subjects. Here we show that the AF can be subdivided based on dynamic changes in functional
connectivity at the streamline endpoints. An unsupervised parcellation algorithm reveals spatially
segregated subunits, which are then functionally quantified through meta-analysis. This approach
identifies three distinct clusters within the AF - ventral, middle, and dorsal frontotemporal AF - each
linked to different frontal and temporal termination regions and likely involved in various language
production and comprehension aspects. Our findings may have relevant implications for the
understanding of the functional anatomy of the AF as well as its contribution to linguistic and non-
linguistic functions.

The arcuate fasciculus (AF) is a prominent association pathway in the
humanbrain. Since itsfirst description in the 19th century, thiswhitematter
bundle has been considered crucial for language processing1–4, and for other
relevant cognitive functions4. Accordingly, this structure has been exten-
sively investigated in the last decades, using post-mortem dissection
methods and, more recently, in vivo diffusion-weighted tractography5–8.

Anatomically, the AF has been subdivided into several segments: the
long (frontotemporal or arcuate proper), anterior (frontoparietal, largely
equivalent to the third branch of the superior longitudinal fasciculus, SLF3),
and posterior (temporoparietal) segments9,10. Converging evidence from
works combining tractography and functional MRI, or lesion mapping
studies in clinical populations, suggests that these distinct anatomical seg-
ments may contribute at different levels in language-specific cognitive
processes. The frontoparietal segment of the AF has been associated with
phonology-to-movementmapping andphonology-basedword retrieval11,12,
the parietotemporal segment to reading and word comprehension13,14, and

the long segment to low-level phonemic and phonological processing in the
context of language production, includingword and non-words (sublexical)
repetition15,16. While there is consensus that frontoparietal and par-
ietotemporal segments represent distinct anatomical and functional units
within the AF, the precise role of the direct, frontotemporal segment of the
AF is still a matter of lively debate. A growing line of evidence suggests that
the frontotemporal AF may take part in higher-order language production
processes involving the integration of lexical and phonological information,
such as naming and phonologic fluency17–20. It has been proposed that this
functional dissociation between phonological and semantic processing in
the frontotemporalAFmaybe grounded in the underlying bundle anatomy,
as suggested by ex vivo and in vivo anatomical findings of “ventral” and
“dorsal” frontotemporal sub-segments, with distinct course, origin, and
termination6,7. It has been hypothesized that the ventral segment would
mediate mostly phonemical-phonological processing, while the dorsal
segment would be involved in lexical-semantical processes21,22.
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However, potential functional dissociation within the frontotemporal
arcuate has poorly been explored because of the lack of methods that con-
veniently combine tractography and functional MRI data.

Recently, novel methods advanced this framework by mapping the
functional white matter networks identified by statistically combining task
or task-free functional and structural imaging23–25. In addition, track-
weighted dynamic functional connectivity (tw-dFC) is a recently developed
technique that allows for a joint analysis of structural and functional con-
nectivity (FC) by mapping time-windowed functional connectivity, sam-
pled from resting-state functional MRI, back onto the underlying white
matter anatomy, reconstructed by tractography26. In previous work, inde-
pendent component analysis (ICA) applied to tw-dFC time series was
suitable for identifying highly reliable and biologically meaningful func-
tional units within the human white matter27. This feature makes it a
valuable tool to parcellate white matter structures in an entirely data-driven
fashion, based on the fluctuations of FC at their cortical endpoints.

In the present work, we adapted this method to characterize the
functional anatomy of the human frontotemporal AF, building on the
hypothesis that independent branches within the AF may be segregated by
their distinct activity profiles. We obtained bundle-specific tw-dFC time
series of the AF by combining high-quality resting-state and diffusion
data28,29. Using a hard clustering approach based on ICA, we aimed at
identifying anatomically and functionally dissociable AF clusters in an
unsupervised, data-driven fashion, according to dynamic changes in FC at
the streamline endpoints29. Finally,wepeered into the functionalmeaningof
such anatomical organization by applying a meta-analytic decoding
approach based on the NeuroQuery predictive model and database30.

Results
Functional activity in the arcuate fasciculus is best decomposed
into two independent components
Preprocessed diffusion-weighted imaging (DWI) data of the primary, test-
retest and validation datasets underwent an automatic AF reconstruction
pipeline throughTractSeg, an algorithm that directly segmentswhitematter
bundles from the Fiber Orientation Distribution (FOD) peaks31. For each
voxel traversed by streamlines, tw-dFC time series at a given time window
(~40-s length) were computed as the average FC value at the endpoints of
the streamlines traversing that voxel (Fig. 1).

Bundle-specific tw-dFC volumes underwent a spatial group ICA fra-
mework implemented in theGroup ICAofFMRIToolbox (GIFT)32,33.Group
analysis was performed separately for the primary, test-retest (Human Con-
nectome Project, HCP) and validation (Leipzig Study for Mind-Body-
Emotion Interactions, LEMON) datasets and for the left and right AF. For
each cardinality of components ranging from k= 2 to k= 5, group ICA was
successfully performed in all datasets for both the left and right AF.Measures

of between-subjects, within-subject, and between-cohorts spatial similarity
and similarity to static FC (Functionnectome) were considered to select an
optimal number of components for left and right AF parcellations (Fig. 2).

The similarity of group ICA results over split-half resamples of the
main dataset was higher for k = 2 (both left and right r = 0.99), with slightly
lower similarity for other k values. (Fig. 2A).

The within-subject similarity was found to be maximal for k = 2 both
for left (r = 0.98) and right AF (r = 0.98); for left AF, lower values were
obtained with k = 3, while for right AF, a drop in similarity values was
observed for k = 4 and k = 5 (Fig. 2B).

The between-cohorts spatial similarity was substantially higher for
k = 2 ICA solution both for left (r = 0.90) and right (r = 0.89) AF, with
markedly lower values for higher values of k (Fig. 2C).

Finally, the similarity to functionnectome-based ICAwas foundhigher
for the k = 2 ICA solution both for left (r = 0.79) and right (r = 0.85) AF; the
correlationwas found to decrease gradually with increasing values of k, with
a slight increase for k = 5 (Fig. 2D).

Taking these results together, k = 2 was selected as the optimal k value
for ICA analysis, and the resulting components were considered for AF
parcellation.

Independent components map on three anatomically distinct
segments of the AF
The results of group ICA suggest a topographical organizationof the left and
right AF (Fig. 3A).

For the left and right AF, component maps included voxels of all the AF
butwith differentweights, corresponding todistinct patterns of correlated and
anti-correlated activity within the AF: for each voxel, positive weights indicate
that the activity is positively correlated to the overall component time series. In
contrast, negative weights indicate that the voxel activity negatively correlates
with the component time series. This differentiation in voxel weights across
theAF allows us to delineate the network’s FC, highlighting the importance of
understanding both synchronized and distinct patterns of neural activity. At
the selected number of components of k= 2, the time series of these com-
ponents, while not fully independent from each other, showed a relatively
weak temporal correlation (left: r= 0.17, right: r= 0.18) (Fig. 3B).

Given the overlapping spatial distribution of these functional com-
ponents, we opted for a hard parcellation of AF sub-units based on k-means
clustering. Based on the silhouette plot (Fig. 4A), an optimal number of
clusters of c = 3 was identified both for left and right AF.

Hard parcellation revealed a tripartite topographical organization of
AF clusters following a ventral-dorsal topographical organization: a ventral
cluster that extends from the superior temporal gyrus, superior temporal
sulcus, and anterior part of the middle temporal gyrus to the most ventral
portion of the inferior frontal gyrus; a middle cluster which connects the

Fig. 1 | Track-weighted dynamic functional connectivity (tw-dFC) of the arcuate
fasciculus. Data obtained from tractography and rs-fMRI are combined into a
hybrid tw-dFC dataset. Preprocessed DWI data undergo an automatic AF recon-
struction pipeline through TractSeg. For each voxel traversed by streamlines,

tw-dFC time series at a given time window (~40-s length) are computed as the
average functional connectivity (FC) value at the endpoints of the streamlines tra-
versing that voxel.
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posteriormiddle temporal gyrus and anterior inferior temporal gyrus to the
dorsal parts of the inferior frontal gyrus; and a dorsal cluster reaching the
inferior temporal sulcus and middle frontal gyrus (Fig. 4B).

Toclarify therelationbetweenfunctional independentcomponents (ICs),
we plotted the average componentweights from the group ICA for each of the
three clusters (Fig. 4C). As highlighted from the plots, component 1 weights
progress from extreme values in the ventral AF cluster to extreme opposite
values in the middle cluster, while component 2 weights span from extreme
values in the middle cluster to opposite extreme values in the dorsal cluster.

DistinctAFclusterscorrelationpatternswithmeta-analyticmaps
A custom meta-analytic approach using the Neuroquery database was
employed to functionally characterize white matter clusters from AF par-
cellation. Voxel-wise inverse distance maps were generated for each cluster
centroid to create continuous distributionmaps, indicating voxel proximity
to centroids. These maps were masked with a mean GMmask and used in
Neuroquery’s image search to find top correlated neuroscience terms30.
After removing duplicates and anatomical terms, unthresholded statistical
maps for the remaining terms were converted to track-weighted predictive
termmaps usingMRtrix334,35. Pairwise Pearson’s correlation quantified the
similarity between cluster maps and termmaps. Statistical significance was
assessed with a permutational approach36, and multiple comparisons were
corrected using the Benjamini-Hochberg method. Correlation effect sizes
were evaluated using the R² determination coefficient.

The analysis of correlation to track-weighted predictive term maps
revealed dissociable correlation patterns for each AF cluster. Cluster inverse
distance maps were correlated to meta-analytic terms, such that positive cor-
relation values indicate that ameta-analyticmap correlates to the proximity to
cluster centroid (i.e., positively associated with a given cluster). Negative cor-
relationvaluesmean thatameta-analyticmap is correlated to thedistance from
the cluster centroid (i.e., it is negatively associated with a given cluster). The
initial screeningofmeta-analytic terms resulted in33neuroscience termsbeing
selected for the following analysis (SupplementaryTables 1, 2). Supplementary
Table3provides the links to thepublications related to themeta-analytic terms.

In brief, the ventral AF cluster positively correlated with auditory-
related terms (“pitch”: left r = 0.39, R2 = 0.15, p < 0.001; right r = 0.41,
R2 = 0.17, p < 0.001; “sound”: left r = 0.47,R2 = 0.22, p < 0.001; right r = 0.51,
R2 = 0.26, p < 0.001) and terms specific to voice processing (“vocal”: left
r = 0.47, R2 = 0.22, p < 0.001; right r = 0.57, R2 = 0.33, p < 0.001; “voice”: left
r = 0.29, R2 = 0.08, p < 0.001; right r = 0.50, R2 = 0.26, p < 0.001); it also

yielded positive correlation to phonology-related terms (“pseudo”, which
includes studies referringmostly towords-pseudowords discrimination: left
r = 0.40, R2 = 0.16, p < 0.001; right r = 0.57, R2 = 0.33, p < 0.001; “phonolo-
gical”: left r = 0.33,R2 = 0.11, p < 0.001; right r = 0.55,R2 = 0.30, p < 0.001). It
negatively correlated to terms related to semantic processing (“semantic”:
left r =−0.19, R2 = 0.03, p < 0.001; right r = 0.55, R2 = 0.30, p < 0.001;
“semantic memory”: left r = 0.33, R2 = 0.11, p < 0.001; right r = 0.55,
R2 = 0.30, p < 0.001). Correlation values were generally higher for the right
AF, and the right ventral clusters was also correlated to terms related to
reading and text processing (“read”: right r = 0.56, R2 = 0.31, p < 0.001; left
r = 0.04, p > 0.05).

The middle cluster of the AF positively correlated with most of the
selected terms, with higher values for language-related terms, especially
terms related to semantic processing (“semantic”: left r = 0.81, R2 = 0.66,
p < 0.001; right r =−0.24, R2 = 0.06, p < 0.001; “semantic memory”: left
r = 0.77,R2 = 0.59, p < 0.001; right r =−0.15, R2 = 0.02, p < 0.001, “semantic
processing”: left r = 0.81, R2 = 0.66, p < 0.001; right r =−0.03, p > 0.05,
“meaning”: left r = 0.79, R2 = 0.63, p < 0.001; right r = 0.21, R2 = 0.04,
p < 0.001, “noun”: left r = 0.75, R2 = 0.56, p < 0.001; right r = 0.35, R2 = 0.12,
p < 0.001) followed by syntactic (“syntactic”: left r = 0.56, R2 = 0.32,
p < 0.001; right r = 0.24,R2 = 0.06, p < 0.001, “syntax”: left r = 0.66,R2 = 0.44,
p < 0.001; right r = 0.44, R2 = 0.19, p < 0.001, “violations”: left r = 0.74,
R2 = 0.55, p < 0.001; right r = 0.67, R2 = 0.44, p < 0.001) and phonological
processing (“phonological”: left r = 0.28, R2 = 0.08, p < 0.001; right r = 0.14,
R2 = 0.02, p < 0.001). It also yielded correlations to non-linguistic terms such
as those related to higher-order cognitive functions (“consideration”: left
r = 0.46, R2 = 0.21, p < 0.001; right r = 0.41, R2 = 0.17, p < 0.001, “campus”
which mostly refers to works on autobiographical memory: left r = 0.40,
p < 0.001; right r = 0.39, p < 0.001) and social function (“social cognition”:
left r = 0.68, p < 0.001; right r = 0.62, p < 0.001). Overall, correlations with
language-related terms were weaker or negative in the right hemisphere,
while correlations to social-related terms were slightly stronger. Themiddle
cluster distance map also negatively correlated with purely auditory-
related terms.

Finally, the dorsal cluster of the AF was anti-correlated with terms
related to acoustic or language processing. It shared with the middle cluster
positive correlation to terms related to higher-order cognitive functions
(“campus”, which includes studies related to autobiographical memory
processes: left r = 0.33, R2 = 0.11, p < 0.001; right r = 0.42, R2 = 0.18,
p < 0.001; “consideration”: left r = 0.39, R2 = 0.15, p < 0.001; right r = 0.41,

Fig. 2 | Dimensionality selection measures. A Between-subjects spatial similarity, calculated between symmetrical random halves of the main dataset; BWithin-subject
similarity, obtained from the test-retest dataset (C)Within-cohort similarity;D Similarity to static connectivity-based track-weighting results, calculated on themain dataset.
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R2 = 0.16, p < 0.001 “locked”: left r = 0.50,R2 = 0.25, p < 0.001; right r = 0.55,
R2 = 0.18, p < 0.001) and to semanticmemory in the right hemisphere (right
r = 0.39, R2 = 0.16, p < 0.001; left r =−0.02, p > 0.05). The most relevant
terms for each cluster are summarized in word clouds (Fig. 4D).

Discussion
We fractionated the anatomy of the frontotemporal AF in the healthy adult
human brain in the left and right hemispheres based on resting-state fMRI
differences and characterized functionally these subcomponents through
comparisonwithmetanalyticmaps. Threemain findings emerged fromour
work. First, distinct patterns of correlated and anti-correlated activity exist
within the AF. Second, the frontotemporal arcuate can be subdivided into
three anatomically distinct clusters. Third, these divisions connect areas
classically activated by different fMRI paradigms.

Structure and function in the AF: independent components of
dynamic brain activity along the AF
The present work provides an account of the functional anatomy of the AF
in the human brain, by investigating tract-specific, time-dependent fluc-
tuations in spontaneous functional activity.This paradigmhas been recently
employed to identify spatially independent functional units in the whole-
brain white matter, representing fiber bundles sharing coordinated

oscillations of connectivity at their endpoints27. Herein, we leveraged this
method to elucidate the structure-function relationship in the AF.

By applying ICA to the track-weighted, time-varying FC data, we
identified distinct patterns of correlated and anti-correlated activity
within the frontotemporal AF. In particular, we described that the
patterns of functional activity within the AF are best characterized by
the least possible number of ICs (k = 2), as confirmed by between-
subject and within-subject (test-retest) reliability measures. Addition-
ally, the two components identified by group ICA showed very high out-
of-sample reproducibility (above 0.90), suggesting that they may cap-
ture functional features ofAF that are robust to experimental differences
in data acquisition and processing. It is worth noting that the two
datasets employed in the analysis showed several demographical (larger
age range, different gender proportion) and technical differences both in
DWI and rs-fMRI acquisition and processing29,37–39 further highlighting
the robustness of these results.

While maintaining a well-recognizable polarity between different
clusters of the AF, the activity patterns highlighted by group-ICA compo-
nents are not entirely segregated to previously anatomically defined seg-
ments of the arcuate, but span across the whole tract. In other words, the
spatial patterns highlighted by ICA may be interpreted as spatially distinct
and temporally coherent “modes” of dynamic connectivity along the AF, in

Fig. 3 | Independent components as modes of dynamic brain activity along the
frontotemporal AF. A Spatial maps of the independent components for left and
right AF. Group-level component z-maps are obtained from back-reconstructed
components in all participants of the main HCP dataset. Since components from
ICA have intrinsic sign indeterminacy, right component 2 has been sign-flipped to

emphasize the similarity to its left counterpart. B Average pairwise correlations
between component time series. At the given value of k = 2, temporal independence
across components is higher (lower correlation between time series). lh left hemi-
sphere, rh right hemisphere.
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which distinct portions of the tract show anti-correlated dynamic con-
nectivity (i.e., while FC increases at the endpoints of a certain cluster
within the tract, it decreases at the endpoints of another cluster and
vice-versa).

In recent years, a growing interest in FC’s dynamic, time-varying prop-
erties has arisen40. While the exact biological meaning of such fluctuations is
still far from being fully understood41, there is substantial consensus that they
may reflect, to a certain extent, neuronal sources of activity at different

frequency bands42–44. In addition, emerging evidence suggests that time-
varyingFC ispartly constrainedbyanatomical connectivity43,45 and that itmay
be related to spontaneous mental processes, such as arousal, perceptual fluc-
tuations, mind-wandering, or daydreaming46–48. In keeping with this view,
projecting the spatial patterns of fluctuations in FC at the endpoints of the AF
onto the tract itself may help understand how different portions of the tracts
constrain intrinsic activity and whether they show dissociable functional
profiles during spontaneous mentation.

Fig. 4 | Clustering of component spatial maps reveals a tripartite organization of
the AF. A Scatter plots of component values in the component space and the
resulting silhouette plots. For each voxel, weights of component 1 and component 2
are plotted in the resulting component space; colors progress from blue to red across
component 1 and from blue to green across component 2. B Ventral, middle, and
dorsal clusters of the AF and their meta-analytic characterization. Clusters are both
rendered in 3D volumetric space and projected on the cortical surface to emphasize
the cortical termination patterns. Labels indicate gyral structures on the left and

sulcal structures on the right. MFG middle frontal gyrus, IFG inferior frontal gyrus,
STG superior temporal gyrus, MTG middle temporal gyrus, ITG inferior temporal
gyrus,MFSmiddle frontal sulcus, IFS inferior frontal sulcus, FOP frontal operculum,
POP parietal operculum, TOP temporal operculum, STS superior temporal sulcus,
MTS middle temporal sulcus. Word clouds are derived from correlation values
obtained frommeta-analytic decoding. Cyan: ventral cluster, orange: middle cluster,
magenta: dorsal cluster. C Violin plots of component weights across the three
clusters. lh left hemisphere, rh right hemisphere.
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Finally, FC fluctuations at rest have been proposed to reflect interac-
tions between functional systems at the network level during spontaneous
activity (“brain states”)49 or during tasks50. These dynamic rearrangements
of functional networks, including context-dependentmodulation ofwithin-
and between- network connectivity (“meta-networking”) have been hypo-
thesized to be relevant to complex brain functions, including language51. In
this framework, the pattern of FC fluctuations observed at the endpoints of
distinct segments of the AF may result from the dynamic recruitment of
functional modules involved in linguistic processes during mental activity.

To gain additional insight into the functional meaning of these ICs, we
benchmarked our results against those obtained with a similar method, the
Functionnectome24. While not entirely identical to tw-dFC, this method also
involves the mapping of functional data on white matter priors to combine
structural and functional information, and can be applied to resting-state
data25; on the other hand, as it is based on directmapping of BOLD signal onto
thewhitematter, theresultingcomponentscanbeseenasanestimateof “static”
FC units in the AF, compared to the time-windowed dynamic FC of tw-dFC.

Thehigh correlation observed between the components identifiedwith
these methods (Fig. 2) is in line with previous accounts describing relatively
similar results between “static” and dynamic connectivity-based ICA of
resting state data27,52. This suggests that fluctuations in FC follow the same
spatial patterns of functional activity andare organized along the samewhite
matter pathways.

Three new divisions of the frontotemporal arcuate fasciculus
We applied a clustering algorithm to the component weights to explore the
inherent anatomy underlying the functional patterns revealed by spatial
ICA. We observed that the spatial distribution of components points out a
tripartite subdivision of the AF with a defined ventro-dorsal and latero-
medial topography.

A similar subdivision of fiber bundles in the frontotemporal AF has
been described by various studies, both in vivo using diffusion tractography.
While the most widely accepted model of AF anatomy substantially
regarded the frontotemporal segment as a whole9, a substantial body of
anatomical evidence suggests that it may be instead composed of multiple,
potentially independent units. Anatomical findings based on in vivo trac-
tography and ex vivofiber dissection subdivided the frontotemporalAF into
an inner or ventral pathway, interconnecting the pars opercularis and the
most ventral portionof precentral gyruswith the STGand rostralMTG, and
an outer or dorsal pathway that connects ventral precentral gyrus, caudal
middle frontal gyrus, and dorsal pars triangularis/dorsal prefrontal cortex
withMTGand ITG6,7. However, it is worth noting that anatomicalmethods
alone are inherently blind both to the exact origin and termination of fiber
bundles and that the functional segregation of these distinct segments can
only be assumed as a hypothesis. Our data-driven subdivision is in line with
the overall ventral-dorsal topography identified by these investigations by
showing a ventral cluster running between the posterior STG and anterior
MTG and the ventral pars orbitalis and triangularis, as in ref. 6, and two
outer-most clusters (middle and dorsal) corresponding substantially to the
anatomically-defined dorsal AF: the middle cluster connects the posterior
MTG and ventral frontal lobe, while the dorsal cluster connects the dorsal
pars triangularis, middle frontal gyrus, and ventral premotor cortex to the
posterior MTG and ITG.

Lastly, our results suggest a slightly asymmetrical patternbetween the left
and rightAFsub-units.However, in contrast to theavailable literature7,wedid
not observe marked left-right differences in the terminations of the ventral
cluster; rather, different termination patterns were demonstrated in the
middle cluster, which in left hemisphere terminatesmostly on the dorsal pars
triangularis, while in the right hemisphere expandsmore to themiddle frontal
gyrus (that in the left hemisphere is covered mostly by the dorsal cluster).

Functional characterizationofAFclusters: relevance to language
processing and cognitive function
Along with providing a multimodal, FC-informed, and data-driven ana-
tomical segmentation of the AF, we also sought to elucidate the cognitive

relevance of our model by applying a custom-designed meta-analytic
decoding paradigm to the AF clusters derived from ICA-based parcellation.

Since earlier investigations, anatomical models of AF and its structural
subunits have been tightly linked to functional language processingmodels9.
There has been a considerable effort towards clarifying the role of AF in the
context of the so-called “dual stream model” of information flow between
language-related areas, which is anchored to specific whitematter tracts53,54.

This model has been formulated in terms of two diverging, parallel but
mutually interacting cortical streams related to speech production: a ventral
stream involved inmapping sound tomeaning (semantic processing) and a
dorsal stream involved in mapping sound to motion (phonological
processing)55,56.Within thismodel, there is general agreement that the AF is
primarily involved in dorsal stream functions. At the same time, otherwhite
matter structures (e.g., uncinate fasciculus, inferior fronto-occipital fasci-
culus (IFOF)) have been proposed to subserve ventral stream functions57–60.
However, whether theAFmay be involved in ventral stream functions, such
as lexical or semantic retrieval, is still a matter of lively debate17–20.

Ourmeta-analytic decoding foundpartially overlappingyet dissociable
correlation profiles between our AF clusters and language-related terms.
The ventral cluster of AF, covering the superior and anterior middle tem-
poral gyrus, was correlated with the results of functional imaging studies
concerning pitch and voice recognition. Evidence from direct electrical
stimulation (DES) and microelectrode recording in awake surgical patients
suggests that the STGmay be involved in syllable and word recognition61–64

and pitch65. In keeping with these findings, DES in the middle and superior
temporal gyrus and peri-insular white matter results in word deafness and
phonemic paraphasia18,66–68, strengthening the hypothesis that the ventral
AF may be involved in sensory and motor phonological processes.

Conversely, themiddle cluster of theAF, connecting the dorsal inferior
frontal gyrus and the posteriormiddle temporal gyrus and sulcus, correlated
with semantic processing. This finding is in line with the involvement of
these regions in semantic tasks, as suggested by non-invasive stimulation
and lesion studies69–71. Semantic access and retrieval have been described to
be mediated by other white matter structures, such as the IFOF20,71,72.
However, a recent observational study on patients with unilateral left
hemisphere stroke suggests that structural connectivity estimates in the
dorsal AF may be related to semantic functions73. Similarly, a recent trac-
tography and task-based fMRI investigation reported that structural
integrity of the left AF segment connecting the middle temporal gyrus with
the dorsal pars opercularis predicts performance in a lexical-semantic verb-
generation task22, suggesting that this portion of AF may be partially
involved in semantic processing, especially during speech production. Our
middle AF cluster is closely similar to the dorsal, “semantic” AF subtract
identified by Janssen et al. 22. This AF cluster wasmostly, but not exclusively,
correlated to semantic processing-related terms.At the same time, it showed
a significant correlation with almost all the language-related terms, sug-
gesting that this part of the AF may have a role in the integration between
ventral and dorsal stream processing.

Lastly, themost dorsal cluster of the AF, connecting ITG to themiddle
frontal gyrus, strongly anticorrelated with phonological and semantic lan-
guage terms, in partial contrast with studies suggesting a putative linguistic
role of the inferior temporal terminations of the AF19,74–76.

Alongwith enforcing thenotionofdifferent functional implications for
different segments of the left AF, our findings also shed light on the func-
tional significance of the right AF, which is far less understood than its left
hemisphere homolog77,78. Our results suggest that the right and the left AF
share a substantially similarmorpho-functional organization, althoughwith
some relevant differences. The ventral cluster of right AF, similarly to its left
homolog, shows a high correlation with phonological functions, voice, and
pitch recognition; for some terms, the correlation was even higher than for
the left AF (e.g., “voice”, “phonological”, “read”). Traditionally, “core”
functions of language processing such as phonological, lexical, and semantic
processing are considered as left-lateralized. In contrast, the right hemi-
sphere is thought to be involved in processing “secondary” language func-
tions such as prosody, pitch, and intonation79–82. It is then possible that the
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correlation pattern found for the right hemisphere may reflect non-specific
language-related activity in the contralateral hemisphere in task-based
studies focused on phonological and semantic features of language pro-
cessing in general. However, recent evidence from post-stroke patients
suggests that the right AF may play a role in the long-term recovery of
language functions, likely compensating for the loss of function of the
contralateral AF83,84. Analogously, compensatory strategies for language
functions in the right AF have been described in patients with psychosis85.
This may suggest that, at least partially, the right AF may be involved in
primary language functions such as phonological or semantic processing,
even in a healthy brain. In keeping with its role in mediating the emotional
components of language processing, the right AF has also been suggested to
be relevant for social cognition. Some studies described a relation between
social cognitive functions, such as emotional intelligence, mentalization, or
mind-reading abilities, and AF integrity and microstructure86–88. Our study
observed a higher correlation between social cognition and social com-
munication for the middle cluster of the AF. Of note, this component also
shows the most marked asymmetry in terms of frontal termination sites
between the left and right hemispheres, which may concur to explain why
correlation to social cognition terms is higher in the righthemisphere. In this
purely explorative context, the identified finding allows us to hypothesize a
functional dissociation between social and linguistic processing within the
right AF. This parallels the phonological-semantical dissociation previously
proposed for the left AF. These results provide valuable insights into the
anatomical substrates of various linguistic and non-linguistic functions
dependent on AF integrity and connectivity. In synthesis, while comparing
the results of our functional and anatomical parcellation of the AF at rest to
meta-analytic estimates derived from task-based functional MRI does not
provide conclusive evidence on the involvement of specific tract segments,
our work allows to draw hypotheses on the functional meaning of specific
anatomical segments of the AF. The confirmation of these findings is
therefore left to further investigations, through intra-operative electrode
recording during awake surgery18.

Technical issues and limitations
Some limitations of the current approach need to be acknowledged. First,
the validationdataset does not perfectlymatch the primary dataset, showing
relevant differences in several experimental conditions. Such differences
include demographical (larger age range, different gender proportion) as
well as technical factors affecting both DWI (single shell, low b-value, no
filtering) and rs-fMRI (lower temporal resolution, different denoising
pipeline). While we chose to maintain the differences between datasets to
highlight the reliability of our findings further, this approach makes it
impossible to quantify the extent towhich differences observed between the
two datasets are driven by differences in the experimental pipeline rather
than genuine, inter-individual anatomical and functional variability.

Second,we adopted an automatic tract reconstruction algorithmbased
on machine learning31 paired with deterministic tractography, which is
known toprovidemore conservative estimatesofwhitematter trajectories89.
As such, we adopt the definition of the AF as characterized in the TractSeg
software, which in turn adopts a tract definition system based on cortical
termination patterns90. Equally valid, automatic segmentation algorithms
for AF reconstruction91,92 may provide slightly different anatomical recon-
structions, potentially affecting the results.

Third, choosing a pre-defined anatomical scaffold of the AF to guide
tw-dFC generation forces the assumption that FC fluctuations sampled at
the bundle termination are entirely driven by activity along the AF. This
excludes the contributions of other fiber tracts that may share the same
cortical projections, such as the uncinate fasciculus93, superior longitudinal
fasciculus94, IFOF95, or short-rangeU-fibers. This consideration also extends
to non-neuronal sources of FC fluctuations96.

Fourth, the quality of the tw-dFCmaps strongly depends on the correct
alignment of tractography and BOLD-fMRI data, making non-linear
registration of tractograms, and distortion correction of both DWI and
BOLD data critical steps for accurate and reliable results.

Lastly, meta-analytic decoding provides a quantitative estimate of
similarity between a given brain map and meta-analytic maps derived by
collating results frommultiple imaging studies97. TheNeuroQuery approach
synthesizes meta-analytic maps for each term from studies in which that
term, or other semantically related terms, are frequently mentioned30. This
approach was preferred over other meta-analytic approaches as it permits
obtaining meaningful statistical activation maps even for terms with few
studies available, unlike other methods that are based on a reduced set of
cognitive latent variables (“topics”)98. However, the resulting statistical maps
do not correspond to any specific fMRI task or mental state and do not
necessarily represent a single task-positive functional network99.

Conclusion
Our investigation demonstrates that theAFmay be subdivided into two ICs
according to dynamic changes in FC at its streamline endpoints. These ICs
spatially subdivide AF into three clusters with distinct courses and cortical
termination. Findings fromour custommeta-analytic approach suggest that
each cluster may be related to distinct functional processes. Our results
support a partial dissociation between auditory/phonemic and lexical/
semantic functions in ventral vs middle left AF, possibly paralleled by a
partial dissociation between auditory-phonemic and social communication
processing in ventral vsmiddle rightAF.At the same time, the dorsal cluster
is involved in non-linguistic processing in both hemispheres. Our findings
provide data-driven evidence for the morpho-functional segregation of the
frontotemporal AF in both hemispheres.

Methods
Data acquisition and preprocessing
All the analysis relevant to the present work has been performed on two
separate datasets: a main dataset and a validation dataset. The main dataset
consists of 3T structural, diffusion, and resting-state functional MRI data
were obtained from the HCP repository (https://humanconnectome.org).
Specifically, two distinct subsamples of patients from the HCP collection
have been employed for the present work: the first subsample (primary
dataset) consisted of 210 healthy participants (males = 92, females = 118,
age range 22–36 years), and the second (test-retest dataset) included 44
participants with available test-retest MRI scans (males = 13; females = 31;
age range: 22–36 years)38. The validation dataset includes 3T structural,
diffusion, and rs-fMRI data of 213 healthy subjects (males = 138,
females = 75, age range 20–70 years) from the LEMON dataset (https://
www.nitrc.org/projects/mpilmbb)29.

Left-handed participants have not been excluded from the analysis as
representing less than 10% in both samples (9.04% in the HCP dataset;
9.81% in the LEMON dataset).

The two datasets come with remarkable differences in demographics,
data acquisition and preprocessing, that are described in full details
in Supplementary Methods, as well as in the relevant reference
publications29,37–39. Notably, it was not possible to statistically assess differ-
ences in age due to the differing age ranges between the two datasets.
However, the first dataset (HCP-young adults) consists exclusively of young
adults aged 25–35, while the second dataset combines a subsample of young
adults (aged 20–35) with a subsample of healthy older adults (aged 59–77).
Gender differences are significant across the two datasets as the LEMON
dataset has a significantly higher proportion of female participants
(χ2 = 18.14, p < 0.001). The DWI scans of the two datasets underwent dif-
ferent preprocessing pipelines: namely, the HCP data (multi-shell, 90
directions per shell at b = 1000, b = 2000, b = 3000, 1.25mm3 voxel size)
were available in a minimally preprocessed form, while the LEMON DWI
scans (single shell, b = 1000, 64 directions, 2mm3 voxel size) were available
only in raw form and were preprocessed entirely with a dedicated pipeline
using the MRtrix3 software100. Both HCP (2mm3 voxel size, TR = 720ms)
and LEMON (2mm3 voxel size, TR = 1400ms) rs-fMRI datawere obtained
in standard-space (MNI152, 2 mm3) preprocessed and denoised form,
though the featured preprocessing steps are different between the two
datasets.
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For the LEMONdataset, we employed structural T1-weighted scans to
calculate direct and inverse transformations to standard MNI152 space,
while for the HCP dataset, they were already made available as part of the
preprocessed dataset.

Of note, we decided to keep the preprocessing pipelines different, as in
our previouswork27, considering the different acquisition features of the two
datasets and in order to further highlight the reproducibility of our findings.

Bundle-specific tractography and tw-dFC
Diffusion signal modeling was performed on the preprocessed DWI data
using the constrained spherical deconvolution (CSD) framework, which
estimates white matter FOD function from the diffusion-weighted decon-
volution signal using a single fiber response function as reference.101. For
HCPDWIdata (multi-shell), amulti-shellmulti-tissue (MSMT)CSDsignal
modeling algorithm was applied to estimate separate response functions in
WM,GM, andCSF102. ForLEMONDWIdata (single-shell), a single-shell 3-
tissue (SS3T)CSDsignalmodelingwas applied, despite the very lowb-value,
to keep the processing as consistent as possible between the two datasets,
since it is necessary for the following automatic tract extraction step. In
addition, it has been suggested to outperform the tensor model for tract
reconstruction even at very low b values103. SS3T-CSD is a variant of the
MSMTmodel optimized for RF estimation in single-shell datasets and was
performed using MRtrix3Tissue104, a fork of MRtrix3 software (https://
3tissue.github.io).

A robust and unbiased reconstruction of the AF is of key importance
for the good quality and generalizability of results. For bundle-specific
tractography of the frontotemporal AF, TractSeg (https://github.com/MIC-
DKFZ/TractSeg/), a convolutional neural network-based tract segmenta-
tion approach, was employed. The TractSeg algorithm directly segments
whitematterbundles for each subject from the FODpeaks; importantly, this
methodhasbeendemonstrated tobe less affectedby theoriginal data quality
compared to other automatic tract segmentation algorithms31, andwas then
preferred to grant high comparability of the results between the different
data-quality HCP and LEMON datasets.

Participant-level binary tract masks and ending masks obtained from
TractSeg were employed to guide tractography of the frontotemporal AF,
which was performed on FODs using deterministic tractography (SD-
STREAM algorithm)105 with default tracking parameters up to a fixed
number of 2000 streamlines.

For each participant of both HCP and LEMON datasets, tractograms
of left and right AF were registered to the MNI 152 standard space by
applying the aforementioned non-linear transformations, to bring indivi-
dual tractography and rsfMRI data in the same space for tw-dFC analysis.
Then, tractograms were combined with preprocessed rs-fMRI time series
using MRtrx3’s tckdfc command to generate a 4-dimensional tw-dFC time
series26. Separate tw-dFC time series were obtained for the left and right
frontotemporal AF, and the following parameters were used: spatial reso-
lution: 2 mm2, sliding window shape: rectangular, sliding window length:
~40 s (55 time points for the HCP data, TR = 0.72 s; 29 time points for the
LEMON data, TR = 1.4 s). The length of the sliding window was chosen in
line with previous works to maximize the stability of the time-varying
connectivity profiles52,96,106,107. For the HCP data, tw-dFC derived from LR
and RL phase encoding volumes were temporally concatenated for each
participant. Estimation of tw-dFC of the AF is summarized in Fig. 1.

Group-level analysis
Group ICA-based parcellation. Bundle-specific tw-dFC volumes
underwent a spatial group ICA framework implemented in the GIFT32,33.
Group analysis was performed separately for the primary dataset (HCP)
and the validation dataset (LEMON) and for the left and right AF. For
each AF tract, a binary mask for group ICA was built after transforming
all the subject bundle masks to template space by summing up all indi-
vidualmasks and applying a probability threshold of 25% (i.e., voxels that
were part of the AF in at least 75% of participants were considered for
group analysis). The pipeline for group ICA analysis involved (1) a first

dimensionality reduction step in which a subject-level principal com-
ponent analysis (PCA) was applied to tw-dFC data to obtain 50 principal
components per subject; (2) a second step in which dimensionality-
reduced data of all subjects were temporally concatenated and a sec-
ondary PCA dimensionality reduction was applied along directions of
maximal group variability; (3) the proper group ICA step, in which a
given number (k) of ICs is obtained from low-dimensional data using the
Infomax algorithm108; (4) back reconstruction, to obtain subject-specific
spatial maps and time courses for each components using the group
information guided ICA (GIG-ICA) algorithm109; (5) back-reconstructed
individual components were then averaged and normalized to obtain
group-level z-maps of each component.

Data-driven dimensionality selection. To select the most appropriate
number of components (k) for AF parcellation given our data, the ICA
pipelinewas iterated for the left and right AF separately at different values
of k, ranging from 2 to 5, and for each ICA solution and the following
measures were calculated:
1. Between-subjects spatial similarity: the primary dataset (HCP,

210 subjects) was split into symmetrical, random halves (105 subjects
each) and the group ICA pipeline was run on each split for all the k
values; the average Pearson’s correlation coefficient between group
spatial ICA maps of the first and second split was employed as a
measure of split-half similarity;

2. Within-subject spatial similarity: the test-retest dataset (HCP,
44 subjects with test-retest diffusion and rsfMRI data) was employed.
The group ICA pipeline was run separately on test and retest tw-dFC
data for all the k values; the average Pearson’s correlation coefficient
between group spatial ICA maps of the test and retest data was
employed as a measure of test-retest similarity;

3. Within-cohorts spatial similarity: the primary dataset (HCP, 210
participant) and the validation dataset (LEMON, 213 participants)
were considered.Group ICAwas performed separately on each dataset
for all the k values; the average Pearson’s correlation coefficient
between group spatial ICA maps of the primary dataset and the
validation dataset was employed as a measure of external validation.

4. Similarity to “static” FC-based ICA: we benchmarked our results
against a recently developed algorithm that involves mapping of the
function signal from fMRI to tractography-derived priors of white
matter anatomy, the “Functionnectome”24. In a recent implementa-
tion, this method has been extended to resting-state FC25 Here, we
employed the participant-level tractograms of left and right AF to
derive group-level AF tractography priors. Then, we applied the
Functionnectome algorithm to map the functional signal from
individual BOLD volumes on these priors. The resulting
4-dimensional volumes underwent group ICA with the same
parameters as for tw-dFC data. The group-ICA results for each value
of kwere compared using the average Pearson’s correlation coefficient.

5. Functional correlation between component time series: to investigate
the temporal independence of time series at each value of k, we
employed theback-reconstructed time series for all subjects of themain
dataset. Pearson’s correlation was calculated pairwise for each pair of
components on each individual and then averaged across the entire
dataset. For values of k > 2, the average between pairwise correlation
values was considered.

The optimal number of components was decided based on a consensus
approach between all these metrics: the value k for which most metrics
showed the highest value.

Component-driven AF parcellation. To derive a parcellation of the AF
from the componentmaps, we applied a k-means clustering procedure in
the component space. Briefly, after selecting an optimal number of
components according to themeasures described above, each voxel in the
AF was clustered according to its similarity in weight in each component
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z-map. The ideal number of clusters (c) was determined using the sil-
houette coefficient110.

Meta-analytic functional decoding. To provide a functional char-
acterization for the white matter clusters derived from AF parcellation,
we employed a custom meta-analytic approach, specifically designed to
account both for the discrete nature of binary clusters and the white
matter nature of the underlying spatial maps. Meta-analytic decoding
was based on the Neuroquery database, which contains predictive acti-
vation maps estimated from over 7547 neuroscience terms30.

Initially, we generated voxel-wise inverse distance maps from each
cluster centroid to transform binary cluster maps into a continuous dis-
tribution of values reflecting the extent of each voxel belonging to each
cluster. This process was carried out separately for the left and right AF
clusters. Within voxel-wise distance maps, the value of each voxel indicates
its proximity to cluster centroids, with higher values signifying closer dis-
tances. In an initial screening of terms from theNeuroquery database, these
inverse distance maps underwent a masking procedure using a mean GM
mask. Subsequently, the masked maps were utilized as inputs for the
Neuroquery image search tool (https://github.com/neuroquery/
neuroquery_image_search), retrieving the top 20 most correlated terms to
each cluster distance map, resulting in a total of 120 neuroscience terms (2
hemispheres × 3 clusters × 20 terms). To this initial selection, a first
screening procedure was applied by discarding duplicate terms and terms
referring to anatomy or localization (e.g., “left”, “right”, “cortex”, “hemi-
sphere” “pfc”). A template tractogramwas obtained for left and right AF by
summing all the subject-specific AF tractograms in standard space. Subse-
quently, the unthresholded statistical maps corresponding to each of the
remaining terms were retrieved and converted to track-weighted predictive
term maps using the left and right template tractograms via MRtrix3’s
tckmap command employing the option -scalar_map to provide the sta-
tistical maps as input34,35.

Finally, pairwise Pearson’s correlation was employed to quantify the
similarity between each cluster distance map and the resulting track-
weighted termmaps. To address the spatial autocorrelation (SA) properties
of arcuate maps, statistical significance was assessed using a permutational
approach described in ref. 36. This approach involved the generation of SA-
preserving surrogate maps through 1000 permutations. The resulting p
values underwent correction formultiple comparisons using theBenjamini-
Hochberg method. The effect sizes of correlations were assessed by com-
puting the R2 determination coefficient.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The primary dataset (HCP) was provided by the Human Connectome
Project,WU‐MinnConsortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657). The data are openly available from
https://www.humanconnectome.org/ The “Leipzig Study for Mind-Body-
Emotion Interactions” (LEMON) data used as a validation dataset was
provided by the Mind-Body-Emotion group at the Max Planck Institute
for Human Cognitive and Brain Sciences. The data are openly available
from https://www.nitrc.org/projects/mpilmbb. The maps obtained in the
present work are available at https://github.com/BrainMappingLab.

Code availability
The codes employed in the presentwork are available at https://github.com/
BrainMappingLab.
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