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Abstract

The field of neuroanatomy of language is moving forward at a fast pace. This advance-
ment is partially due to developments in magnetic resonance imaging (MRI) and in 
particular MRI–based diffusion tractography, the latter allowing scientists to non-
invasively study brain connections in the living brain. For the field of language studies 
this advancement is timely and important for two reasons. First, it liberates scientists 
from neuroanatomical models of language derived from animal studies. Second, it per-
mits testing network correlates of linguistic models directly in the human brain. This 
chapter introduces general principles of MRI, diffusion MRI, and tractography (many 
technical terms will be explained in the Key Terms section; these are printed in italics 
on their first occurrence in the main text). An example of their applications will be 
used to explicate the versatility of this method in the realm of language studies, whilst 
discussing advantages and limitations of diffusion methods. Their non-invasiveness 
and wide availability will continue to provide new insights which will challenge our 
current understanding of the brain’s language network.
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Introduction

Structural imaging based on computerized tomography (CT) and magnetic resonance 
imaging (MRI) has progressively replaced traditional post‐mortem studies in the 
process of identifying the neuroanatomical basis of language. In the clinical setting, 
the information provided by structural imaging has been used to confirm the exact 
diagnosis and formulate an individualized treatment plan. In the research arena, 
neuroimaging has permitted to understand neuroanatomy at the individual and 
group level. The possibility to obtain quantitative measures of lesions has improved 
correlation analyses between severity of symptoms, lesion load, and lesion location.

More recently, the development of structural imaging based on diffusion MRI has 
provided valid solutions to some of the major limitations of more conventional 
imaging. In stroke patients, diffusion can visualize early changes that are otherwise 
not detectable with more conventional structural imaging, with important implica-
tions for the clinical management of acute stroke patients. Beyond the sensitivity to 
early changes, diffusion imaging tractography presents the possibility of visualizing 
the trajectories of individual white matter pathways connecting distant regions. A 
pathway analysis based on tractography is offering a new perspective in neurolin-
guistics. First, it permits to formulate new anatomical models of language function 
in the healthy brain and allows to directly test these models in the human population 
without any reliance on animal models. Second, by defining the exact location of 
the damage to specific white matter connections we can understand the contribu-
tion of different mechanisms to the emergence of language deficits (e.g., cortical 
versus disconnection mechanisms). Finally, a better understanding of the anatomical 
variability of different language networks is helping to identify new anatomical predic-
tors of language recovery. In this chapter we will focus on the principles of structural 
MRI and, in particular, diffusion imaging and tractography and present examples of 
how these methods have informed our understanding of variance in language perfor-
mances in the healthy brain and language deficits in patient populations.

Assumptions and Rationale

In the last 30 years, advances in the field of structural imaging have primarily originated 
from a progressive improvement of spatial resolution of CT and MRI sequences, 
automatic methods for group-level analysis, and the development of diffusion 
imaging. Increased spatial resolution for structural images enabled scientists to 
obtain more precise quantitative measurements of cortical anatomy in the form of 
thickness, surface, and volume, and a better delineation of cortical and subcortical 
lesions. Diffusion imaging on the one hand is highly sensitive towards tissue damage 
and on the other hand allows to visualize and quantify white matter connections 
between cortical brain regions in the living human brain. When combined with 
automatic methods for tissue classification and group-level statistics, this has led to 
significant new insights on the anatomy of language. In addition, diffusion imaging 
has revealed tracts that are unique to the human brain and identified correlations 
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between lesions to specific tracts and severity of behavioral symptoms. In this para-
graph we briefly discuss how these approaches are applied to study language in 
healthy volunteers and to patients with language deficits.

Structural Imaging Methods Based on Conventional MRI

Current algorithms for structural imaging analysis are able to differentiate neuronal 
tissue into gray matter, white matter, and cerebrospinal fluid (CSF) and extract 
quantitative measurements in single subjects and across large populations. These 
brain morphometry methods require an excellent contrast between different tissues 
(gray and white matter, CSF) to define gray matter density, gray matter volume, and 
the inner and outer surface of the cortex. Tissue classification improves with increasing 
spatial resolution of the imaging sequences.

Different automatic processing approaches to brain morphometry analysis have 
been developed and include voxel‐based morphometry (VBM), deformation‐based 
morphometry (DBM), and surface‐based morphometry (SBM).

VBM is a fully automated technique that aims at estimating local differences in 
tissue composition, after minimizing gross anatomical differences between individ-
uals (Ashburner & Friston, 2000). This is achieved by, first, estimating tissue 
classification based on T1‐weighted images. Second, the segmentation mask (gray 
matter or white matter) is spatially linearly normalized to a standard space to assure 
that a specific voxel is at the same anatomical location across subjects. Third, to 
reduce the influence of inter‐individual anatomical variability, spatial smoothing is 
applied. After correction for intensity non‐uniformities, voxel intensities are mea-
sured and compared between groups or correlated with behavioral measurements 
(Ashburner & Friston, 2000). Finally, the results are corrected for multiple compar-
isons to avoid type I error (false positive results). With VBM it is possible to either 
analyze the entire brain or focus on specific regions of interest (Geva, Baron, Jones, 
Price, & Warburton, 2012; Leff et al., 2009; Rowan et al., 2007). In the healthy 
brain, VBM has been used on large datasets to understand structural characteristics 
of language–related areas. For example, Good et al. (2001) studied 465 healthy vol-
unteers to show significant leftward asymmetry in Heschl’s gyrus, frontal oper-
culum, superior and inferior frontal sulci, and limbic structures. When combined 
with other measures, VBM aids exploring structural–functional relationships. 
Dorsaint‐Pierre et al. (2006), for example, showed no correlation between language 
dominance (assessed with the Wada test) and asymmetry of gray matter concentration 
in posterior language areas (assessed with VBM) in epileptic patients. However, 
when more anterior language regions in the frontal lobe were analyzed, a significant 
correlation emerged.

Deformation Based Morphometry (DBM) has been developed as complementary 
method to VBM to partially overcome the limitations due to potential misregistra-
tion. In DBM non‐linear registration algorithms are used to register the native image 
to a reference template and deformation field matrices are computed. The statistical 
analysis is then performed on the deformation matrices rather than on the registered 
voxels. In other words, DBM analyzes how much the voxel volumes change during 
image registration to the reference template, in contrast to VBM, which focuses on 
the residual image variability after its transformation. DBM is a preferred method 
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to investigate longitudinal changes, for example, in patients with progressive neuro-
degenerative disease (Brambati et al., 2015; Heim et al., 2014).

Finally, Surface Based Morphometry (SBM) offers the possibility of analyzing 
separate features of gray matter anatomy, such as surface area, cortical thickness, 
curvature, and volume. While thickness measures may provide some indication of 
underlying neuronal loss, reduced size of neuronal cell bodies, or degradation, sur-
face area measures may reflect underlying white matter fibers (Van Essen, 1997). 
Similar to VBM, SBM requires a tissue segmentation of high‐resolution T1‐weighted 
images. However, in SBM the surface boundary between white and gray matter (inner 
boundary of cortex) and the boundary between gray matter and CSF (outer surface 
or pial surface) are calculated separately. The output file is a scalar value measured in 
millimeters, which indicates the distance between the inner and the outer surface for 
each vertex (Fischl & Dale, 2000). These techniques construct and analyze surfaces 
that represent structural boundaries between different tissues within the brain. As 
such, it differs from VBM and DBM approaches, which ultimately analyze image 
properties within the individual voxels. SBM is widely used in neurodevelopmental 
and neurodegenerative language disorders where the boundaries between cortex and 
white matter are preserved and reliable cortical measures of thickness, surface area 
and volume can be obtained (Ecker et al., 2016; Rogalski et al., 2011). In primary 
progressive aphasia (PPA) patients, for example, Rogalski et al., (2011) used DBM to 
investigate a specific correspondence between the pattern of cortical thinning and the 
language deficit profile. When applied to stroke patients, all automatic methods listed 
above have some shortfalls due to problems related to tissue classification  and image 
normalisation, especially when lesions are large. Some authors have tried to over-
come these limitations by developing dedicated lesion‐based methods.

These lesion‐based methods rely on the delineation of a lesion to estimate statistical 
associations between damaged tissue and behavioral deficits. Multiple algorithms are 
currently available to perform lesion‐deficit analysis, including voxel‐based lesion 
symptom mapping (VLSM) (Bates et al., 2003; see Chapter  16 for details), non‐
parametric mapping (NPM) (Rorden, Karnath, & Bonilha, 2007), and Anatomo‐
Clinical Overlapping Maps (AnaCOM) (Kinkingnéhun et al., 2007; see also Foulon 
et al., 2017). All these software packages differ with regard to their required input data 
(e.g., binary versus continuous scores), statistical analysis (parametric vs. non‐
parametric), underlying assumptions on voxel independence (e.g., single voxels analysis 
versus clusters of voxels analysis), and their need for different study designs (e.g., number 
and demographics of groups for comparison). Despite these differences, all lesion‐deficit 
approaches need to fulfill prerequisites, including accurate and precise anatomical delin-
eation of the lesions, neuropsychological assessments with high diagnostic sensitivity to 
the cognitive processes of interest, and reliable statistical methods to associate lesion 
characteristics with behavioral deficits (Medina, Kimberg, Chatterjee, & Coslett, 2010).

Diffusion‐Weighted Imaging

Diffusion‐weighted imaging (DWI) based on MRI was initially applied to the brain 
in the mid–1980s (Le Bihan et al., 1986) and its potential for studying stroke–
related changes was promptly recognized (Moseley et al., 1990). The much later 
development of tractography algorithms (Mori et al., 1999; Conturo et al., 1999; 
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Basser et al., 2000) made it possible to visualize white matter connections in the 
human brain and describe, for example, how language networks mature from 
childhood to adulthood and to characterize the effects of neurological and psychi-
atric disorders on the anatomy and function of language pathways.

Enthusiasm for the first tractography visualizations of white matter pathways was 
partially due to the resemblance of the in vivo virtual reconstructions to classical 
post‐mortem dissections (Catani, Howard, Pajevic, & Jones, 2002; Lawes et al., 
2008). In addition, it became evident that tractography offered clear advantages 
compared to other invasive methods and could reveal new features of white matter 
anatomy that are unique to the human brain. For example, it became apparent that 
the arcuate fasciculus is a rather complex pathway formed by a direct long segment 
between the classical Broca’s and Wernicke’s regions and an indirect pathway passing 
via the inferior parietal lobule (i.e., Geschwind’s region). The indirect pathway 
includes the anterior segment between Broca’s and Geschwind’s regions and the 
posterior segment between Wernicke’s and Geschwind’s regions (Catani, Jones, & 
ffytche, 2005). The availability of diffusion imaging in large groups of healthy volunteers 
permitted to replicate these findings and at the same time identify inter‐individual 
differences. The three segments of the arcuate fasciculus are present in the left hemi-
sphere in all healthy individuals, but in the right hemisphere the long segment shows 
great variability. Indeed, it is reported as being bilateral in 40% of the healthy 
population and extremely left lateralized in the remaining 60%, where this segment 
is either absent or very small in the right hemisphere (Catani et al., 2007). These 
percentages change when females and males are analyzed separately, with a greater 
number of males showing an extreme left asymmetry. In recent years, tractography 
has been used to identify previously undescribed language pathways, such as the 
frontal aslant tract (FAT), which connects Broca’s area to pre‐supplementary motor 
cortex and medial prefrontal cortex (Catani et al., 2013). When applied to language 
disorders, tractography provides diffusion indices that can be used to map white matter 
degeneration along specific tracts and reveal a direct association between the severity 
of tract damage and language deficits.

Apparatus and Nature of the Data

Current MRI scans allow to acquire structural T1- and T2-weighted images, FLAIR, 
perfusion and diffusion data in less than one hour. 1.5 or 3 Tesla MRI systems are 
typically used to acquire MR images by applying a pulse sequence, which contains 
radiofrequency (RF) pulses and gradient pulses with carefully controlled timings. 
There are various types of sequences, but they all have timing values, namely echo 
time (TE) and repetition time (TR), both of which can be modified by the operator 
and influence the weighting, or sensitivity, of the image to specific tissues. MRI uti-
lizes the natural properties of hydrogen atoms as part of water or lipids and the most 
important properties are the proton density (number of hydrogen atoms in a particular 
volume) and two characteristic relaxation times called longitudinal and transverse 
relaxation time, denoted as T1 and T2 respectively. Relaxation times describe how 
long the tissue takes to return to equilibrium after an RF pulse. Structural T1‐weighted 
images are acquired using short TE/TR whereas T2‐weighted images are acquired using 
long TE/TR (Figure 15.1). On T2-weighted images the signal from the cerebro-spinal 



 Structural Neuroimaging 293

L

L

CT

pCASL b0 b500 b1500

T1-weighted T2-weighted T2-FLAIR R

R

A) B)

C) D)

Figure  15.1 Imaging of an acute patient presenting with anomia following left inferior 
parietal and frontal lobe stroke.
A) Axial non‐contrast computerized tomography (CT) scan demonstrates diffuse hypo‐
density in the parietal (indicated by thick red arrow) and frontal regions (indicated by thin 
red arrow), predominantly in white matter. The low signal‐to‐noise resolution and low white/
gray matter boundary contrast of CT does not allow to determine the exact extent of the 
damage. B) T1‐ and T2‐weighted and fluid‐attenuated inverse recovery (FLAIR) images 
showing structural changes as hypo‐ and hyper‐intense areas in the white matter, respectively. 
In structural T1‐weighted images there is a clear contrast between white and gray matter, 
which is less evident in pathological T2‐weighted images. In T2‐weighted images the CSF 
signal is hyperintense (i.e., brighter) and gray matter appears brighter than white matter. 
Lesions appear hyperintense and may therefore be difficult to distinguish from CSF. In the 
FLAIR images there is a better contrast between the CSF (hypointense) and the lesion (hyper-
intense). C) Pulsed continuous Arterial Spin labelling (pCASL) perfusion‐weighted MRI 
image of the lesion shows reduced cerebral blood flow (CBF) to a large area in the inferior 
parietal region and to a smaller area in the left frontal lobe. The degree of hypo‐perfusion 
within the white matter is also noticeable but more difficult to distinguish from the CSF 
within the lateral ventricles. D) Series of diffusion images showing differences in the exact 
extension of the lesion depending on the b‐value used to acquire them (non‐diffusion 
weighted image: b=0 and diffusion‐weighting: b=500 and b=1500). These images lack the 
spatial resolution of conventional MRI sequences but are sensitive to acute lesions within 
minutes. (See insert for color representation of the figure.)
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fluid (CSF) in the ventricles and around the cortex is hyperintense and gray matter 
appears brighter than white matter. This poses a problem in stroke, as lesions appear 
hyperintense and may therefore be difficult to distinguish from CSF. To overcome this 
limitation a T2–weighted image with fluid–attenuated inversion recovery (FLAIR) is 
often acquired in clinical populations, where an additional inversion pulse is applied 
with the purpose of nulling signal from CSF. This renders CSF nearly fully suppressed 
and it appears dark, whilst lesions appear bright.

In clinical settings, T1‐ and T2‐weighted images are widely used to characterize 
lesions due to tumors, traumatic brain injury, infection, neurodegeneration, and 
chronic stroke, but their sensitivity to acute ischemic changes is low.

Early changes in acute stroke can be best detected using perfusion‐ and diffusion‐
weighted imaging (Figure 15.1). Perfusion imaging is a method to measure cerebral 
blood flow (CBF) through the brain. Measurement of tissue perfusion depends on the 
ability to serially measure concentration of a tracer agent in the brain. These tracers 
are often exogenous contrast agents that are injected into the vascular system before 
acquiring the images. More recently less invasive sequences have been developed that 
use magnetic labeling of blood (endogenous) as the tracer (e.g., Arterial Spin Labelling, 
ASL) (Alsop & Detre, 1998). Perfusion imaging is a highly sensitive sequence to early 
ischaemic changes as it measures CBF, which if reduced for a critical time period, will 
cause irreversible damage (Figure  15.1). A mismatch between the lesion extent 
depicted on T1‐weighted and perfusion images is often used to guide therapeutic 
decision as this mismatch is considered to quantify salvageable tissue at risk.

Diffusion MRI quantifies water diffusion in biological tissues. In neuronal tissue, 
the displacement of water molecules is not random due to the presence of biological 
structures such as cell membranes, filaments, and nuclei. These structures reduce 
diffusion distances in the three‐dimensional space. In the white matter, the overall 
displacement is reduced unevenly (i.e., anisotropic) due to the presence of axonal 
membranes and myelin sheets, which restricts water diffusion in a direction per-
pendicular to the main orientation of the axonal fibers. Diffusion MRI can there-
fore detect diffusion drops in infarcted tissue within only several minutes of an 
arterial occlusion. Hereafter the signal stabilizes (pseudonormalization) before it 
progressively increases to become elevated in the chronic stage. For diffusion 
imaging, scanning times depend on various settings, including the b‐value, which 
is a factor that reflects the strength and timing of the gradients used for the 
sequence: the higher the b‐value, the stronger the diffusion effects in the data 
(Figure 15.1). At a given b‐value, tissue with fast diffusion (e.g., CSF) experiences 
more signal loss, resulting in low intensity in the image, whilst tissue with slow 
diffusion (e.g., gray matter) produces high intensity in the image (Figure  15.1). 
Other important parameters are the number of gradient directions (ideally ≥30 for 
diffusion tensor studies, and ≥60 for High Angular Resolution Diffusion Imaging; 
HARDI) and the number of non‐diffusion weighted images (Jones et al., 2002; 
Jones, 2008; Dell’Acqua et al., 2013). Non–diffusion weighted scans are of impor-
tance to better fit the diffusion metrics and to improve the correction of diffusion‐
weighted volumes for eddy current and motion artefacts. This is achieved by 
iterative alignment to the non‐diffusion weighted volumes and to minimize T1 and 
T2 shine through effects (Le Bihan & Johansen‐Berg, 2012). The rule of thumb is to 
acquire one non‐diffusion weighted scan interleaved between diffusion‐weighted 
volumes, usually with a 1:10 ratio.
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Collecting and Analyzing Data

Raw data are collected as Digital Imaging and Communications in Medicine 
(DICOM) files from the scanner and converted to 4D Neuroimaging Informatics 
Technology Initiative (NIFTI) format, which can be readily imported in any standard 
neuroimaging program for visualization and further processing.

For diffusion imaging, in addition to the 4D image a B‐matrix (which contains the 
gradient table that encodes the orientation of the gradients during the acquisition) is 
extracted to correctly preserve the orientational information by realigning the diffu-
sion‐weighted images to the reoriented B–matrix (Leemans & Jones, 2009). The B‐
matrix is usually provided by the analysis software during the initial processing 
steps. Prior to modeling, it is essential to perform manual quality control of the raw 
data (e.g., detecting missing volumes and misorientation of gradient tables) and 
automatic correction for artefacts (e.g., ghosting, wrapping, and ringing), head 
motion artefacts, and image distortions due to the scanner equipment and environ-
ment (e.g., eddy current, field inhomogeneity, echo planar imaging geometric distor-
tion) (Jones, Knösche, & Turner, 2013). Once these steps have been implemented, 
tracking algorithms can be chosen to propagate the streamline reconstruction, using 
tensor or multi‐fiber models and deterministic or probabilistic tracking. Virtual dis-
sections of tractography datasets are used to obtain 3D reconstructions of pathways 
and tract-specific measurements along the tracts, such as volume and other diffu-
sion indices calculated from the tensor or the fibre orientation distribution (FOD) 
(see below). The resulting average values per pathway and from each single subject 
can be submitted to statistical analysis. This allows to create percentage overlay maps 
for pathways of interest (Forkel, Thiebaut de Schotten, Kawadler et al., 2014b), 
establish group differences between controls and patients and between patients with 
different clinical presentations (Catani et al., 2013), detect volumetric left‐right dif-
ferences (Catani et al., 2007; Catani, Forkel, & Thiebaut de Schotten, 2010; Thiebaut 
de Schotten et al., 2011), and associate structural white matter anatomy with recovery 
from aphasia after stroke (Forkel, Thiebaut de Schotten, Dell’Acqua et al., 2014a).

Diffusion Tensor Imaging

The displacement of water molecules measured in a voxel can be described geomet-
rically as an ellipsoid (the tensor) calculated from the diffusion coefficient values 
(eigenvalues, λ1‐3) and orientations (eigenvectors, ν1‐3) of its three principal axes. 
A detailed analysis of the tensor can provide precise information about not only the 
average water molecular displacement within a voxel (e.g., mean diffusivity, MD), 
but also the degree of tissue anisotropy (e.g., fractional anisotropy, FA), and the main 
orientation of the underlying white matter pathways (e.g., principal eigenvector or 
color‐coded maps). These indices provide complementary information about the 
microstructural composition and architecture of brain tissue.

Mean diffusivity (MD) is a rotational invariant quantitative index that describes 
the average mobility of water molecules and is calculated from the three eigenvalues 
(λ1, λ2, λ3) of the tensor (MD = [(λ1 + λ2 + λ3)/3]). Voxels containing gray and white 
matter tissue show similar MD values (Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro, 
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1996). MD reduces with age within the first years of life and increases in those disor-
ders characterized by demyelination, axonal injury, and edema (Beaulieu, 2009).

The fractional anisotropy (FA) index ranges from 0 to 1 and represents a 
quantitative measure of the degree of anisotropy in biological tissue. High FA values 
indicate a more anisotropic, that is, a non‐equal, diffusion. In the healthy adult brain, 
FA varies from 0.2 (e.g., in gray matter) to ≥0.8 in the white matter. FA provides 
information about the organization of the tissue within a voxel (e.g., strongly or 
weakly anisotropic) and the microarchitecture of the fibers (e.g., parallel, crossing, 
kissing fibers). FA reduces in pathological tissue (e.g., demyelination, edema) and is 
therefore commonly used as an indirect index of microstructural organization.

Perpendicular [(λ2 + λ3)/2] and parallel diffusivity (λ1) describe the diffusivity 
along the principal directions of the diffusion. The perpendicular diffusivity, also 
indicated with the term radial diffusivity (RD), is generally considered a more 
sensitive index of axonal or myelin damage, although interpretation of changes in 
these indices in regions with crossing fibers is not always straightforward (Dell’Acqua 
& Catani, 2012). The principal eigenvector and color‐coded maps are particularly 
useful to visualize the principal orientation of the tensor within each voxel (Pajevic 
& Pierpaoli, 1999).

Diffusion tractography, which is a family of algorithms able to propagate 
continuous streamlines from voxel to voxel, can be used to generate indirect mea-
sures of tract volume and microstructural properties along pathways. Tractography‐
derived inter‐hemispheric differences in tract volume are widely reported in the 
literature, especially for language pathways (Catani et al., 2007).

In addition to tract volume, for each voxel intersected by streamlines, other diffu-
sion indices can be extracted and a total average can be extrapolated from these. 
Examples of this application include tract-specific measurements of fractional 
anisotropy, mean diffusivity, parallel and radial diffusivity (Catani 2006). These can 
provide important information on the microstructural properties of streamlines and 
their organization. Asymmetry in FA, for example, could indicate differences in the 
axonal anatomy (intra‐axonal composition, axon diameter, and membrane perme-
ability), fiber myelination (myelin density, internodal distance, and myelin distribu-
tion), or fiber arrangement and morphology (axonal dispersion, axonal crossing, 
and axonal branching) (Beaulieu, 2002).

Other diffusion measurements may reveal more specific streamline properties. 
Changes in axial diffusivity, for example, could be related to intra‐axonal compo-
sition, while RD may be more sensitive to changes in membrane permeability and 
myelin density (Song et al., 2002). These in vivo diffusion–based measurements 
allow connectional anatomy to be defined at different scales during development 
and in the adult brain.

Advanced Diffusion Models

One of the major limitations of the tensor model is the inability to estimate multiple 
fiber orientations. Several non-tensorial models have been proposed to overcome the 
limitations of the tensor model and the most commonly employed will be briefly men-
tioned below. 
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Multiparametric methods, for example, multitensor (Alexander, Barker, & Arridge, 
2002; Tuch et al., 2002) or “Ball and Stick” models (Behrens et al., 2003) are 
model‐dependent approaches in which the diffusion data are fitted with a chosen 
model that assumes a discrete number of fiber orientations (e.g., two or more). 
Nonparametric, model‐independent methods such as diffusion spectrum imaging 
(DSI) (Wedeen, Hagmann, Tseng, Reese, & Weisskoff, 2005), q–Ball imaging (Tuch, 
Reese, Wiegell, & Van Wedeen, 2003), or diffusion orientation transform (Özarslan, 
Shepherd, Vemuri, Blackband, & Mareci, 2006) have been developed to better 
characterize the water displacement by using a spherical function or the diffusion 
orientation distribution function (dODF). Whilst tensor‐based models only visu-
alize one diffusion orientation per voxel, the multilobe shape of the dODF pro-
vides information on the number of fiber orientations, their orientation and the 
weight of each fiber component within a voxel.

A third group of methods takes advantage of both approaches by extracting 
directly the underlying fiber orientation (i.e., fiber‐ODF) using a specific diffusion 
model for white matter fibers. The latter approaches are usually described as spherical 
deconvolution methods (Dell’Acqua, Simmons, Williams, & Catani, 2013) and they 
generally show higher angular resolution (i.e., the ability to resolve crossing fibers at 
smaller angles) compared with methods based on dODFs (Seunarine et al., 2009; 
Catani et al., 2012). Spherical deconvolution methods are becoming the methods of 
choice in an increasing number of studies as they require acquisition protocols that 
are close to clinical tractography protocols (e.g., a low number of diffusion gradient 
directions and b–values that are accessible on most clinical scanners).

Tractography Reconstructions

Deterministic and probabilistic tractography represent the most widely used 
approaches to perform 3D reconstructions of white matter trajectories using diffu-
sion data. Compared to deterministic approaches in which the estimated fiber orien-
tation (e.g., the direction of maximum diffusivity for the tensor model) is assumed to 
represent the best estimate to propagate streamlines, probabilistic methods generate 
multiple solutions to reflect also the variability or “uncertainty” of the estimated 
fiber orientation (Jbabdi & Johansen‐Berg, 2011). These methods, therefore, provide 
additional information on the reproducibility of each tractography reconstruction 
by mapping the intrinsic uncertainty of individual diffusion datasets. The uncer-
tainty quantified by probabilistic tractography is mainly driven by the magnetic res-
onance noise, partial volume effects, and inaccuracy of the chosen diffusion model. 
Therefore, the probability of individual maps should not be considered as a direct 
measure of the anatomical probability of the tract. Indeed, in some cases artefactual 
trajectories can have high probability similar to true anatomical pathways. Ultimately, 
in datasets without noise both deterministic and probabilistic approaches based on 
the same diffusion model would generate identical tractography maps. Understanding 
these basic assumptions underlying probabilistic tractography is important to cor-
rectly interpret the obtained results (Dell’Acqua & Catani, 2012).

Advanced diffusion models that resolve multiple white matter trajectories within 
a single voxel offer the possibility of describing tracts that are not visible using 
current diffusion tensor methods. This opens up the possibility to visualize and 
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describe tracts, which until now have been impossible to identify due to methodological 
limitations (Thiebaut de Schotten et al., 2011; Catani et al., 2012; Parlatini et al., 
2017). Although an exact knowledge of these fibers represents a significant step for-
ward in our understanding of human anatomy, it is important to be aware that 
tractography based on advanced diffusion methods is prone to produce a higher 
number of false positives compared to the tensor model. Hence, validation of these 
tracts with complementary methods, such as intraoperative stimulation studies and 
postmortem staining (Elias, Zheng, Domer, Quigg, & Pouratian, 2012) is necessary 
before widely applying these anatomical models to clinical populations.

Atlasing

Until the advent of tractography, our knowledge of white matter anatomy was 
based on a small number of influential 19th and early 20th century post‐mortem 
dissection atlases (Burdach, 1819; Déjerine, 1895; Sachs, 1892; Forkel et al., 
2015). In common with their contemporary counterparts (Talairach & Tournoux, 
1988), these atlases emphasize the average anatomy of representative participants 
at the expense of variability between participants. In recent years, several research 
groups have used tractography to produce group atlases of the major white matter 
tracts (Catani & Thiebaut de Schotten, 2012; Hua et al., 2008; Mori et al., 2005; 
Rojkova et al., 2016; Wakana et al., 2007). By extracting the anatomical location 
of each tract from several participants, these atlases provide probability maps of 
each pathway and quantify their anatomical variability. These atlases help clini-
cians to establish a relationship of focal lesions with nearby tracts and improve 
clinical‐anatomical correlation (Figure 15.2) (Thiebaut de Schotten et al., 2014). It 
remains to be established, however, how much of this variability is due to a true 
underlying anatomical difference or the result of methodological limitations.

Tract Specific Measurements

Beyond visualizing white matter pathways, tractography facilitates quantitative 
analyses by extracting diffusion indices along the dissected tract. It is possible to 
characterize the microstructural properties of tissue in the normal and pathological 
brain and provide quantitative measurements for group comparisons or individual 
case studies (Figure 15.2) (Catani 2006).

The interpretation of these indices, however, is not always straightforward, espe-
cially in regions containing multiple fibers. An example of the complexity of this 
problem is the increase of fractional anisotropy commonly seen in the normal‐
appearing white matter regions distant to the lesioned area. Before interpreting 
these changes as indicative of “plasticity or remodeling,” other explanations should 
be taken into account. In voxels containing both degenerating and healthy fibers, 
increases in fractional anisotropy values are, in fact, more likely due to the axonal 
degeneration of the perpendicular fibers (Wheeler‐Kingshott & Cercignani, 2009; 
Dell’Acqua et al., 2013). The lack of specificity of current diffusion indices (i.e., 
diffusion changes depend on a number of biological, biochemical, and microstruc-
tural factors) and the intrinsic voxel‐specific rather than fiber‐specific information 
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Figure 15.2 Lesion mapping based on T1‐weighted data (A), on a diffusion tractography atlas 
(B), and an example of extracting tract–based measurements from tractography (C).
A) Group‐level lesion overlay percentage maps for an aphasic stroke patient cohort (n=16) 
reconstructed on an axial template brain and projected onto the left lateral cortical surface. 
This method identifies areas most commonly affected by lesions within a group of patients. 
B) Lesion mask (purple) from a single stroke patient overlaid onto a tractography‐based white 
matter atlas to extract measures of lesion load on pathways affected by the lesion. C) Differences 
in tract‐specific measurements of the frontal aslant tract and uncinate fasciculus between 
 control subjects and patients with non‐fluent/agrammatic and semantic variants of primary 
progressive aphasia (PPA). Tractography reconstructions show the fractional anisotropy values 
mapped onto the streamlines of the frontal aslant tract and uncinate fasciculus of a control 
subject and two representative patients with PPA with non‐fluent/agrammatic and semantic 
variant. Exemplary measurements of fractional anisotropy (FA) are reported for the frontal 
aslant tract (solid bars) and the uncinate fasciculus (patterned bars). **statistically significant 
different versus semantic group (P < 0.05), ††statistically significant different versus controls 
(P < 0.001). IFG: inferior frontal gyrus, MFG: middle frontal gyrus, SFG: superior frontal gyrus, 
MTG: middle temporal gyrus, STG: superior temporal gyrus. Source: Modified from Forkel 
et al., 2014 and Catani et al., 2013. (See insert for color representation of the figure.)
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derived from current indices has stimulated scientists to work on new methods and 
novel diffusion indices. More recently, true tract‐specific indices based on spherical 
deconvolution that better describe the microstructural diffusion changes of 
individual crossing fibers within the same voxel have been proposed. Changes in 
the hindrance modulated orientation anisotropy (HMOA) (Dell’Acqua et al., 
2013), for example, have a greater sensitivity than conventional fractional anisot-
ropy values to detect degeneration that occurs only in one population of fibers, 
whereas the other crossing fibers remain intact. In the future, tractography 
combined with multimodal imaging methods will allow to extract even more 
specific tissue microstructure indices.

An Exemplary Study

In this section, we discuss how Forkel et al. (2014a) used conventional MRI in 
conjunction with diffusion tractography to identify anatomical predictors of 
language recovery after stroke. In this study, 18 patients with unilateral first‐ever 
left hemisphere stroke and language impairment confirmed by the revised Western 
Aphasia Battery (WAB–R) (Kertesz, 2007) were prospectively recruited. Language 
and neuroimaging assessments were performed within two weeks after symptom 
onset and again after six months.

The 45‐minute MRI scan included a high‐resolution structural T1‐weighted 
volume for lesion analyses and diffusion imaging data with 60 diffusion‐weighted 
directions (b‐value 1500 mm2/s) and seven interleaved non‐diffusion weighted 
volumes. Matrix size was 128 × 128 × 60 and voxel size was 2.4 × 2.4 × 2.4 mm. 
Peripheral gating was applied to avoid brain pulsation artefacts. Diffusion tensor 
imaging data were preprocessed and corrected for eddy current and motion artefacts 
through iterative correction to the seven non‐diffusion weighted volumes using 
ExploreDTI (www.exploreDTI.com). Whole brain tractography was performed 
from all brain voxels with fractional anisotropy >0.2. Streamlines were propagated 
with a step‐size of 1 mm, using Euler integration and b‐spline interpolation of the 
diffusion tensor field (Basser et al., 2000). Where fractional anisotropy was <0.2 or 
when the angle between two consecutive tractography steps was >45°, streamline 
propagation was stopped.

Tractography dissections of the three segments of the arcuate fasciculus were 
obtained using a three regions of interest approach as previously described 
(Catani et al., 2005). Regions of interest were defined on fractional anisotropy 
images in the patients’ native space and included an inferior frontal region, an 
inferior parietal region, and a posterior temporal region. All streamlines passing 
through both frontal and temporal regions of interest were considered as 
belonging to the long segment of the arcuate fasciculus. All streamlines between 
temporal and parietal regions of interest were classified as posterior segment of 
the arcuate fasciculus and those between parietal and frontal regions of interest 
were labelled as anterior segment of the arcuate fasciculus. The volume for each 
segment was calculated as the number of voxels intersected by the streamlines of 
each segment. To control for the possibility that hemisphere size might be driving 

http://www.exploreDTI.com
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the volume of the arcuate segments (i.e., larger hemisphere means larger arcuate 
 fasciculus), the tract volume was normalized by the hemisphere volume (segment 
volume/hemisphere volume). The hemispheric volume was obtained using 
FMRIB Software Library package (FSL, http://www.fmrib.ox.ac.uk/fsl/). The 
normalized segment volume was then used for further analysis.

Stroke lesions were manually delineated on T1‐weighted images and these delin-
eations were saved as lesion masks. Their volume (number of voxels) was extracted 
using FSL and lesion masks were subsequently binarized (i.e., assigning a value of 0 
or 1 to each voxel) and normalized to a standard space. Lesion masks were overlaid 
to create percentage maps to compute commonly damaged voxels. The average 
lesion size for this group was 21.62 cubic centimeters (standard deviation = 32.43 
cubic centimeters). This number can be obtained by extracting the number of voxels 
within the lesion mask and multiplying these with the volume of the voxel in the 
underlying imaging scan. A standard neuroimaging software will provide this value 
automatically without the need for the calculation. An overlay of the patients’ nor-
malized lesions is shown in Figure 15.2A.

The aphasia quotient (AQ) was used as a measure of the patients’ overall 
performance on the WAB‐R at the acute stage and at follow‐up. This measure was 
then inputted into a hierarchical regression analysis alongside demographic data 
(age, sex, education), lesion volume, and volume of the three segments. This analysis 
was run separately for the left and the right hemisphere. For the left hemisphere, 
adding tractography to the analysis did not significantly improve the predictive 
strength of longitudinal aphasia severity. By contrast, in the right hemisphere the 
addition of the normalized size of the long segment of the arcuate to a model based 
on age, sex, and lesion size, increased the predictive power of the variance at six 
months from nearly 30% to 57% (Figure 15.3). Of the four predictors only age and 
the right long segment were independent predictors. Gender and lesion size were 
marginally significant predictors.

These results indicate that the use of structural imaging based on lesion mapping 
and tractography can help clinicians identify trajectories of language recovery after 
stroke.

Advantages and Disadvantages of Diffusion Tractography

The ability of tracking connections in the living human brain allows to move above 
and beyond network models based on non‐human primate tracing and small number 
of human post mortem studies. This is leading to the description of new tracts, some 
of which are important for language. In addition, fast acquisition sequences are now 
available to obtain high‐quality data from patients who are prone to movement arte-
facts. When combining tractography with detailed linguistic assessment, neurobio-
logical language models can be directly validated or falsified. However, despite a 
progressive amelioration of the spatial resolution of diffusion datasets, compared to 
classical axonal tracing studies, tractography is still unable to identify the smallest 
bundles and differentiate anterograde and retrograde connections. The level of noise 
in the diffusion data and the intrinsic MRI artefacts also constitute important factors 

http://www.fmrib.ox.ac.uk/fsl/
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Figure 15.3 Anatomical variability in perisylvian white matter anatomy and its relation to post‐stroke language recovery.
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that affect the precision and accuracy of the measurements and, as a consequence, 
the quality of the tractography reconstruction (Basser, Pajevic, Pierpaoli, Duda, & 
Aldroubi, 2000; Le Bihan, Poupon, Amadon, & Lethimonnier, 2006). Finally, diffu-
sion tensor tractography assumes that fibers in each voxel are well described by a 
single orientation estimate, which is a valid assumption for voxels containing only 
one population of fibers with a similar orientation. The majority of white matter 
voxels, however, contain populations of fibers with multiple orientations. In these 
regions fibers cross, kiss, merge, or diverge, and the tensor model is inadequate to 
capture this anatomical complexity. More recent tractography developments based 
on HARDI methods and appropriate processing techniques are able to partially 
resolve fiber crossings. All these limitations may lead to tracking pathways that do 
not exist (false positive) or fail to track existing ones (false negative).

It is evident from all the considerations above that interpretation of tractography 
results requires experience and a priori anatomical knowledge. This is particularly 
true for the diseased brain, where alteration and anatomic distortion due to the 
presence of pathology generate tissue changes likely to lead to a greater number of 
artefactual reconstructions. Despite these limitations, tractography is the only tech-
nique that permits a quantitative assessment of white matter tracts in the living 
human brain. The recent development of MRI scanners with stronger gradients and 
multi‐band acquisition sequences represents one of many steps towards a significant 
improvement of the diffusion tractography approach. The possibility of combining 
tractography with other imaging modalities will provide a complete picture of the 
functional anatomy of human language pathways.

Key Terms

Brain morphometry Measures brain structures based on structural MRI data. 
Techniques include voxel‐based, surface‐based, and deformation‐based 
morphometry.

Cerebral blood flow (CBF) Blood supply to the brain in a given period of time. In an 
adult, CBF is typically 750 milliliters per minute or 15% of the cardiac output. 
This equates to an average perfusion of 50 to 54 milliliters of blood per 100 grams 
of brain tissue per minute.

Cerebrospinal fluid (CSF) Fluid surrounding the brain and spinal cord and filling 
the cavities inside the brain. It is produced within the ventricles of the brain 
and provides basic mechanical and immunological protection to the nervous 
system.

Computerized Tomography (CT) An imaging procedure that uses special x‐ray 
equipment to create anatomical scans.

Contrast Various tissues have different signal intensities, or brightness, on MR 
images. The differences are described as the image, tissue, or signal contrast and 
allow to define boundaries between tissues, for example, gray‐white matter.

Diffusion–weighted imaging (DWI) An advanced MRI pulse sequence based upon 
measuring the random Brownian motion of water molecules within the biological 
tissue contained in a voxel (3D volume).
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Echo time (TE) Time between the radio frequency pulse and MR signal sampling, 
corresponding to maximum of echo.

Fractional Anisotropy (FA) A measure based on diffusion‐weighted imaging 
describing the deviation from isotropy (equal diffusion in all directions) and 
measured between 0 (isotropic) and 1 (anisotropic). High FA is found in brain 
voxels with a minimal amount of crossing fibers.

High Angular Resolution Diffusion Imaging (HARDI) A “family” of advanced 
diffusion modeling methods that tries to overcome limitations of diffusion tensor 
imaging by resolving multiple fiber orientations. The main feature of HARDI 
approaches is to collect diffusion data along a large number of diffusion direc-
tions (≥60) to better characterize certain features of microstructure such as 
angular complexity.

Hindrance modulated orientation anisotropy (HMOA) Fiber specific diffusion 
index derived from spherical deconvolution analysis that provides information 
about white matter anisotropy and microstructure organization. Differently 
from more common voxel‐based metrics (e.g., FA) that provide only a single 
average value per voxel, HMOA can have multiple values, one for each distinct 
fiber orientation resolved by spherical deconvolution.

Magnetic Resonance Imaging (MRI) Non‐invasive imaging technique for obtaining 
anatomical images based on the magnetic properties of hydrogen atoms.

Mean Diffusivity (MD) A measure based on diffusion‐weighted imaging describing 
the mean molecular motion, independent of tissue directionality.

Myelin: The myelin sheath is a lipid membrane wrapped around the nerve axons in 
a spiral fashion, which provides an electrically insulating layer. The myelin 
sheath originates from oligodendroglia cells in the central nervous system.

Pulse sequences A group of MRI sequences in which multiple radio frequency pulses 
are applied to produce a wide range of contrasts. The most frequent pulse 
sequences are spin echo, gradient echo, inversion recovery, susceptibility-
weighted imaging, and diffusion. 

Radial Diffusivity (RD) A DWI‐based measure describing the diffusivity perpendicular 
to the axonal fibers, which is calculated from the mean magnitude of diffusion 
along two perpendicular directions that are orthogonal to the overall maximum 
diffusion direction.

Registration/normalization A neuroimaging registration method to spatially align a 
series of images, either from intra‐subject or inter‐subject image volumes, which 
is utilized in several steps of preprocessing.

Repetition time (TR) Time between two excitation pulses during an MRI acquisition.
Segmentation mask Partition of an image into a set of tissues that compose the 

image, including masks for gray and white matter, CSF, and lesioned tissue.
Spatial smoothing A process that requires convolving the data with a smoothing 

kernel in order to increase signal relative to noise, conform the data to a Gaussian 
field model, and to improve intersubject averaging.

Spatial resolution Spatial resolution of an image is determined by the size of the 
voxels. The smaller the size of the voxel, the higher the resolution and higher 
resolution allows to better segment tissues and identify lesions.

Standard space In order to compare brain scans they have to be aligned in a patient‐
orientation‐independent space. Often this is achieved by using a reference tem-
plate brain, a representative image with anatomical features in a coordinate 
space, which then provides a target to align individual images to.
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Streamlines Tractography visualizes 3D reconstructions of the preferred orientation 
of water molecules, which is indicative of the underlying axonal structures. 
Given the inference, the term “streamlines” should be used in preference of 
axons or fibers when referring to tractography results.

T1‐weighted image A basic pulse sequence (short TE/TR), which relies on the 
longitudinal relaxation after spins have been flipped into a transverse plane by a 
radiofrequency pulse.

T2‐weighted image A basic pulse sequence (long TE/TR), which relies upon the 
transverse relaxation of the net magnetization vector. 

Tractography A method used to reconstruct 3D trajectories of white matter path-
ways from diffusion data. 

Voxel A 3D volume (a volume pixel), associated with a particular x‐y‐z coordinate 
in the brain, used in the analysis of 3D brain imaging data.
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